Skip to main content
Log in

Proposition of an uncoupled approach for the identification of cyclic heat sources from temperature fields in the presence of large strains

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A methodology is proposed to define an equivalent geometry allowing the use of an uncoupled algorithm to solve thermomechanical problems when cyclic large strain occurs. This methodology is set up on the case of a simple bar and is then challenged on a structural sample for cyclic loadings. It is shown that the definition of the equivalent geometry is dependent on the thermal boundary conditions, which are usually unknowns of the thermal problem. The proposed approach is finally applied to the identification of cyclic dissipation from infrared thermography measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Behnke, R., Kaliske, M., Klüppel, M.: Thermo-mechanical analysis of cyclically loaded particle-reinforced elastomer components: experiment and finite element simulation. Rubber Chem. Technol. 89, 154–176 (2016)

    Article  Google Scholar 

  2. Bergstrom, J., Boyce, M.: Constitutive modelling of the large-strain time-dependent behaviour of elastomers. J. Mech. Phys. Solids 46, 931–954 (1998)

    Article  ADS  MATH  Google Scholar 

  3. Biot, M.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Boulanger, T., Chrysochoos, A., Mabru, A., Galtier, A.: Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behaviour of steels. Int. J. Fatigue 26, 221–229 (2004)

    Article  Google Scholar 

  5. Chrysochoos, A., Louche, H.: An infrared image processing to analyse the calorific effects accompanying strain localisation. Int. J. Eng. Sci. 38, 1759–1788 (2000)

    Article  Google Scholar 

  6. Connesson, N., Maquin, F., Pierron, F.: Experimental energy balance during the first cycles of cyclically loaded specimens under the conventional yield stress. Exp. Mech. 51, 23–44 (2011)

    Article  Google Scholar 

  7. Delpuyo, D., Balandraud, X., Grédiac, M.: Applying infrared thermography to analyze martensitic microstructures in a Cu–Al–Be shape memory alloy subjected to cyclic loading. Mater. Sci. Eng. A 528, 8249–8258 (2011)

    Article  Google Scholar 

  8. Delpuyo, D., Balandraud, X., Grédiac, M.: Heat source reconstruction from noisy temperature fields using an optimized derivative Gaussian filter. Infrared Phys. Technol. 60, 312–322 (2013)

    Article  ADS  Google Scholar 

  9. Doudard, C., Calloch, S., Hild, F., Cugy, P., Galtier, A.: Identification of scatter in high cycle fatigue from temperature measurements. Comptes Rendus Mécanique 10, 795–801 (2004)

    Article  ADS  Google Scholar 

  10. Doudard, C., Calloch, S., Hild, F., Roux, S.: Identification of heat source fields from infrared thermography: determination of self-heating in a dual-phase steel by using a dog bone sample. Mech. Mater. 42, 55–62 (2010)

    Article  Google Scholar 

  11. Dulieu Barton, J., Stanley, P.: Applications of thermoelastic stress analysis to composites materials. Strain 35, 41–48 (1999)

    Article  Google Scholar 

  12. Florin, P., Doudard, C., Fachinetti, M., Calloch, S.: Determination of the first stress tensor invariant of a complex steel sheet structure from thermoelastic stress analysis. Procedia Eng. 133, 736–745 (2015)

    Article  Google Scholar 

  13. Harwood, N., Cummings, W.: Thermoelastic Stress Analysis. CRC Press, Boca Raton (1991)

    Google Scholar 

  14. Jégou, L., Marco, Y., Le Saux, V., Calloch, S.: Fast prediction of the wöhler curve from heat build-up measurements on short fiber reinforced thermoplastics. Int. J. Fatigue 47, 259–267 (2012)

    Article  Google Scholar 

  15. Le Chenadec, Y.: Autoéchauffement, fatigue thermomécanique des élastomères. Ph.D. thesis, Ecole Polytechnique (2008)

  16. Le Chenadec, Y., Raoult, I., Stolz, C., Nguyen-Tajan, M.: Cyclic approximation of the heat equation in finite strains for the heat build-up problem of rubber. J. Mech. Mater. Struct. 4, 309–318 (2009)

    Article  Google Scholar 

  17. Le Saux, V., Doudard, C.: Proposition of a compensated pixelwise calibration for photonic infrared cameras and comparison to classic calibration procedures: case of thermoelastic stress analysis. Infrared Phys. Technol. 80, 83–92 (2017)

    Article  ADS  Google Scholar 

  18. Le Saux, V., Marco, Y., Calloch, S., Charrier, P.: Contribution of accurate thermal measurements to the characterization of the thermomechanical properties of rubber-like materials. Plast. Rubbers Compos.: Macromol. Eng. 41, 277–284 (2012)

    Article  Google Scholar 

  19. Le Saux, V., Marco, Y., Calloch, S., Charrier, P., Taveau, D.: Heat build-up of rubber under cyclic loadings: validation of an efficient demarch to predict the temperature fields. Rubber Chem. Technol. 86, 38–56 (2013)

    Article  Google Scholar 

  20. Le Saux, V., Marco, Y., Doudard, C., Calloch, S., Charrier, P.: Fast evaluation of the fatigue lifetime of rubber-like materials based on a heat build-up protocol and micro-tomography measurements. Int. J. Fatigue 32, 1582–1590 (2010)

    Article  Google Scholar 

  21. Lemaitre, J., Chaboche, J.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  22. Lion, A.: A physically based method to represent the thermo-mechanical behaviour or elastomers. Acta Mech. 123, 1–25 (1997)

    Article  MATH  Google Scholar 

  23. Marco, Y., Huneau, B., Masquelier, I., Le Saux, V., Charrier, P.: Prediction of the fatigue properties of natural rubber based on the description of the cracks population and of the dissipated energy. Polym. Test. 59, 67–74 (2017)

    Article  Google Scholar 

  24. Marco, Y., Le Saux, V., Jégou, L., Launay, A., Serrano, L., Raoult, I., Calloch, S.: Dissipation analysis in sfrp structural samples: thermomechanical analysis and comparison to numerical simulations. Int. J. Fatigue 67, 142–150 (2014)

    Article  Google Scholar 

  25. Marco, Y., Masquelier, I., Le Saux, V., Charrier, P.: Fast prediction of the wöhler curve from thermal measurements for a wide range of nr and sbr compounds. Rubber Chem. Technol. (2017). doi:10.5254/rct.16.83755

  26. Masquelier, I., Marco, Y., Le Saux, V., Calloch, S., Charrier, P.: Determination of dissipated energy fields from temperature mappings on a rubber-like structural sample: experiments and comparison to numerical simulations. Mech. Mater. 80, 113–123 (2015)

    Article  Google Scholar 

  27. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940)

    Article  ADS  MATH  Google Scholar 

  28. Munier, R., Doudard, C., Calloch, S., Weber, B.: Determination of high cycle fatigue properties of a wide range of steel sheet grades from self-heating measurements. Int. J. Fatigue 63, 46–61 (2014)

    Article  Google Scholar 

  29. Munier, R., Doudard, C., Calloch, S., Weber, B., Fachinetti, M.: Contribution of kinematical and thermal measurements for mechanical properties identification: application to high cycle fatigue. Exp. Mech. 52, 743–756 (2012)

    Article  Google Scholar 

  30. Reese, S., Govindjee, S.: Theoretical and numerical aspects in the thermo-viscoelastic material behaviour of rubber-like materials. Mech. Time-Depend. Mater. 1, 357–369 (1998)

    Article  ADS  Google Scholar 

  31. Rittel, D.: An investigation of the heat generated during cyclic loading of two glassy polymers. Part I. Experiments. Mech. Mater. 32, 131–147 (2000)

    Article  Google Scholar 

  32. Rivlin, R.: Large elastic deformations of isotropic materials. iv. Further developments of the general theory. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 241, 379–397 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Stanley, P.: Beginnings and early development of thermoelastic stress analysis. Strain 44, 285–297 (2008)

    Article  Google Scholar 

  34. Treloar, L.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Le Saux.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glanowski, T., Le Saux, V., Doudard, C. et al. Proposition of an uncoupled approach for the identification of cyclic heat sources from temperature fields in the presence of large strains. Continuum Mech. Thermodyn. 29, 1163–1179 (2017). https://doi.org/10.1007/s00161-017-0572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0572-z

Keywords

Navigation