Fast prediction of the fatigue behavior of short-fiber-reinforced thermoplastics based on heat build-up measurements: application to heterogeneous cases

Abstract

Short-fiber-reinforced thermoplastics components for structural applications are usually very complex parts as stiffeners, ribs and thickness variations are used to compensate the quite low material intrinsic stiffness. These complex geometries induce complex local mechanical fields but also complex microstructures due to the injection process. Accounting for these two aspects is crucial for the design in regard to fatigue of these parts, especially for automotive industry. The aim of this paper is to challenge an energetic approach, defined to evaluate quickly the fatigue lifetime, on three different heterogeneous cases: a classic dog-bone sample with a skin-core microstructure and two structural samples representative of the thickness variations observed for industrial components. First, a method to evaluate dissipated energy fields from thermal measurements is described and is applied to the three samples in order to relate the cyclic loading amplitude to the fields of cyclic dissipated energy. Then, a local analysis is detailed in order to link the energy dissipated at the failure location to the fatigue lifetime and to predict the fatigue curve from the thermomechanical response of one single sample. The predictions obtained for the three cases are compared successfully to the Wöhler curves obtained with classic fatigue tests. Finally, a discussion is proposed to compare results for the three samples in terms of dissipation fields and fatigue lifetime. This comparison illustrates that, if the approach is leading to a very relevant diagnosis on each case, the dissipated energy field is not giving a straightforward access to the lifetime cartography as the relation between fatigue failure and dissipated energy seems to be dependent on the local mechanical and microstructural state.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Zago, A., Springer, G.S.: Fatigue lives of short fiber reinforced thermoplastics parts. J. Reinf. Plast. Compos. 20(7), 606–620 (2001)

    ADS  Article  Google Scholar 

  2. 2.

    Bernasconi, A., Davoli, P., Armanni, C.: Fatigue strength of a clutch pedal made of reprocessed short glass fibre reinforced polyamide. Int. J. Fatigue 32(1), 100–107 (2010). doi:10.1016/j.ijfatigue.2009.02.001. http://www.sciencedirect.com/science/article/pii/S0142112309000322. Fourth International Conference on Fatigue of Composites (ICFC4)

  3. 3.

    Klimkeit, B.: Etude expérimentale et modélisation du comportement en fatigue multiaxiale d’un polymère renforcé pour application automobile. Ph.D. thesis, Sciences et Ingénierie en Matériaux, Mécanique, Energétique et Aérotechnique (2009)

  4. 4.

    Serrano, L.: Thermomechanical characterization of the fatigue behaviour of short fibers reinforced thermoplastic. Ph.D. thesis, Université de Bretagne occidentale (2015). https://hal.archives-ouvertes.fr/tel-01240739

  5. 5.

    Sonsino, C., Moosbrugger, E.: Fatigue design of highly loaded short-glass-fibre reinforced polyamide parts in engine compartments. Int. J. Fatigue 30(7), 1279–1288 (2008). doi:10.1016/j.ijfatigue.2007.08.017. http://www.sciencedirect.com/science/article/pii/S0142112307002605

  6. 6.

    Bernasconi, A., Conrado, E., Hine, P.: An experimental investigation of the combined influence of notch size and fibre orientation on the fatigue strength of a short glass fibre reinforced polyamide 6. Polym. Test. 47, 12–21 (2015). doi:10.1016/j.polymertesting.2015.08.002. http://www.sciencedirect.com/science/article/pii/S0142941815001804

  7. 7.

    Bernasconi, A., Cosmi, F., Zappa, E.: Combined effect of notches and fibre orientation on fatigue behaviour of short fibre reinforced polyamide. Strain 46(5), 435–445 (2010). doi:10.1111/j.1475-1305.2009.00667.x

    Article  Google Scholar 

  8. 8.

    Marco, Y., Le Saux, V., Jégou, L., Launay, A., Serrano, L., Raoult, I., Calloch, S.: Dissipation analysis in SFRP structural samples: Thermomechanical analysis and comparison to numerical simulations. Int. J. Fatigue 67, 142–150 (2014). doi:10.1016/j.ijfatigue.2014.02.004. http://www.sciencedirect.com/science/article/pii/S0142112314000449

  9. 9.

    Mégally, A.: Etude et modélisation de l’orientation de fibres dans des thermoplastiques renforcés. Ph.D. thesis, ENSMP Paris (2005)

  10. 10.

    Vincent, M., Giroud, T., Clarke, A., Eberhardt, C.: Description and modeling of fiber orientation in injection molding of fiber reinforced thermoplastics. Polymer 46(17), 6719–6725 (2005). doi:10.1016/j.polymer.2005.05.026. http://www.sciencedirect.com/science/article/pii/S0032386105005598. Polymer Blends, Composites and Hybrid Polymeric Materials IUPAC MACRO 2004

  11. 11.

    Benveniste, Y.: A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 6(2), 147–157 (1987). doi:10.1016/0167-6636(87)90005-6. http://www.sciencedirect.com/science/article/pii/0167663687900056

  12. 12.

    Baptiste, D.: Damage micromechanics modelling of discontinuous reinforced composites. In: Allix, O., Hild, F. (eds.) Continuum Damage Mechanics of Materials and Structures. Elsevier, Amsterdam, pp. 115–165 (2002)

  13. 13.

    Bouaziz, A., Zairi, F., Naït-Abdelaziz, M., Gloaguen, J., Lefebvre, J.: Micromechanical modelling and experimental investigation of random discontinuous glass fiber polymer–matrix composites. Compos. Sci. Technol. 67(15–16), 3278–3285 (2007). doi:10.1016/j.compscitech.2007.03.031. http://www.sciencedirect.com/science/article/pii/S0266353807001418

  14. 14.

    Doghri, I., Friebel, C.: Effective elasto-plastic properties of inclusion-reinforced composites. Study of shape, orientation and cyclic response. Mech. Mater. 37(1), 45–68 (2005). doi:10.1016/j.mechmat.2003.12.007. http://www.sciencedirect.com/science/article/pii/S016766360400002X

  15. 15.

    Brassart, L., Doghri, I., Delannay, L.: Homogenization of elasto-plastic composites coupled with a nonlinear finite element analysis of the equivalent inclusion problem. Int. J. Solids Struct. 47(5), 716–729 (2010). doi:10.1016/j.ijsolstr.2009.11.013. http://www.sciencedirect.com/science/article/pii/S002076830900448X

  16. 16.

    Meraghni, F., Desrumaux, F., Benzeggagh, M.: Implementation of a constitutive micromechanical model for damage analysis in glass mat reinforced composite structures. Compos. Sci. Technol. 62(16), 2087–2097 (2002). doi:10.1016/S0266-3538(02)00110-0. http://www.sciencedirect.com/science/article/pii/S0266353802001100

  17. 17.

    Andriyana, A., Billon, N., Silva, L.: Mechanical response of a short fiber-reinforced thermoplastic: Experimental investigation and continuum mechanical modeling. Eur. J. Mech. A/Solids 29(6), 1065–1077 (2010). doi:10.1016/j.euromechsol.2010.07.001. http://www.sciencedirect.com/science/article/pii/S0997753810000926

  18. 18.

    Drozdov, A., Al-Mulla, A., Gupta, R.: Finite viscoplasticity of polycarbonate reinforced with short glass fibers. Mech. Mater. 37(4), 473–491 (2005). doi:10.1016/j.mechmat.2004.03.004. http://www.sciencedirect.com/science/article/pii/S0167663604000481

  19. 19.

    Klimkeit, B., Nadot, Y., Castagnet, S., Nadot-Martin, C., Dumas, C., Bergamo, S., Sonsino, C., Büter, A.: Multiaxial fatigue life assessment for reinforced polymers. Int. J. Fatigue 33(6), 766–780 (2011). doi:10.1016/j.ijfatigue.2010.12.004. http://www.sciencedirect.com/science/article/pii/S0142112310003051

  20. 20.

    Launay, A., Maitournam, M., Marco, Y., Raoult, I.: Multiaxial fatigue models for short glass fiber reinforced polyamide—part I: nonlinear anisotropic constitutive behavior for cyclic response. Int. J. Fatigue 47, 382–389 (2013). doi:10.1016/j.ijfatigue.2012.03.012. http://www.sciencedirect.com/science/article/pii/S0142112312001272

  21. 21.

    Miri, V., Persyn, O., Lefebvre, J.M., Seguela, R.: Effect of water absorption on the plastic deformation behavior of nylon 6. Eur. Polym. J. 45(3), 757–762 (2009). doi:10.1016/j.eurpolymj.2008.12.008. http://www.sciencedirect.com/science/article/pii/S0014305708006824

  22. 22.

    Launay, A., Marco, Y., Maitournam, M., Raoult, I.: Modelling the influence of temperature and relative humidity on the time-dependent mechanical behaviour of a short glass fibre reinforced polyamide. Mech. Mater. 56, 1–10 (2013). doi:10.1016/j.mechmat.2012.08.008. http://www.sciencedirect.com/science/article/pii/S0167663612001597

  23. 23.

    Casado, J., Carrascal, I., Polanco, J., Gutiérrez-Solana, F.: Fatigue failure of short glass fibre reinforced PA 6.6 structural pieces for railway track fasteners. Eng. Fail. Anal. 13(2), 182–197 (2006). doi:10.1016/j.engfailanal.2005.01.016. http://www.sciencedirect.com/science/article/pii/S1350630705001238

  24. 24.

    Hartmann, J., Moosbrugger, E., Büter, A.: Variable amplitude loading with components made of short fiber reinforced polyamide 6.6. Procedia Eng. 10, 2009–2015 (2011). doi:10.1016/j.proeng.2011.04.333. http://www.sciencedirect.com/science/article/pii/S1877705811005212. 11th International Conference on the Mechanical Behavior of Materials (ICM11)

  25. 25.

    Tancrez, J.P., Pabiot, J., Rietsch, F.: Damage and fracture mechanisms in thermoplastic-matrix composites in relation to processing and structural parameters. Compos. Sci. Technol. 56(7), 725–731 (1996). doi:10.1016/0266-3538(96)00013-9. http://www.sciencedirect.com/science/article/pii/0266353896000139

  26. 26.

    Mallick, P., Zhou, Y.: Effect of mean stress on the stress-controlled fatigue of a short E-glass fiber reinforced polyamide-6,6. Int. J. Fatigue 26(9), 941–946 (2004). doi:10.1016/j.ijfatigue.2004.02.003. http://www.sciencedirect.com/science/article/pii/S0142112304000465

  27. 27.

    Bernasconi, A., Davoli, P., Basile, A., Filippi, A.: Effect of fibre orientation on the fatigue behaviour of a short glass fibre reinforced polyamide-6. Int. J. Fatigue 29(2), 199–208 (2007). doi:10.1016/j.ijfatigue.2006.04.001. http://www.sciencedirect.com/science/article/pii/S0142112306001484

  28. 28.

    Jia, N., Kagan, V.A.: Effects of time and temperature on the tension-tension fatigue behavior of short fiber reinforced polyamides. Polym. Compos. 19(4), 408 (1998). doi:10.1002/pc.10114

    Article  Google Scholar 

  29. 29.

    Rosa, G.L., Risitano, A.: Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. Int. J. Fatigue 22(1), 65–73 (2000). doi:10.1016/S0142-1123(99)00088-2. http://www.sciencedirect.com/science/article/pii/S0142112399000882

  30. 30.

    Meneghetti, G., Quaresimin, M.: Fatigue strength assessment of a short fiber composite based on the specific heat dissipation. Compos. Part B Eng. 42(2), 217–225 (2011). doi:10.1016/j.compositesb.2010.12.002. http://www.sciencedirect.com/science/article/pii/S1359836810002246

  31. 31.

    Jegou, L., Marco, Y., Le Saux, V., Calloch, S.: Thermomechanical identification of a threshold in the cyclic response of “SFRP”: fast identification of the fatigue properties and correlation to microstructural data. In: ECCM15. Venice, Italy (2012). https://hal.archives-ouvertes.fr/hal-00726688

  32. 32.

    Jegou, L., Marco, Y., Le Saux, V., Calloch, S.: Fast prediction of the Wöhler curve from heat build-up measurements on short fiber reinforced plastic. Int. J. Fatigue 47, 259–267 (2013). doi:10.1016/j.ijfatigue.2012.09.007. http://www.sciencedirect.com/science/article/pii/S014211231200271X

  33. 33.

    Berrehili, A., Nadot, Y., Castagnet, S., Grandidier, J., Dumas, C.: Multiaxial fatigue criterion for polypropylene–automotive applications. Int. J. Fatigue 32(8), 1389–1392 (2010). doi:10.1016/j.ijfatigue.2010.01.008. http://www.sciencedirect.com/science/article/pii/S0142112310000216

  34. 34.

    Serrano Abello, L., Marco, Y., Le Saux, V., Robert, G., Charrier, P.: Fast prediction of the fatigue behavior from heat build-up measurements: application to short fiber reinforced thermoplastics under various loading conditions. In: ECCM16 (2014). http://www.escm.eu.org/eccm16/assets/0461.pdf

  35. 35.

    Le Saux, V., Doudard, C.: Proposition of a compensated pixelwise calibration for photonic infrared cameras and comparison to classic calibration procedures: case of thermoelastic stress analysis. Submitted to Infrared Physics & Technology, (2016)

  36. 36.

    Lemaitre, J., Chaboche, J.L.: Mécanique des matériaux solides. Dunod, Paris (2004)

    Google Scholar 

  37. 37.

    Masquelier, I., Marco, Y., Le Saux, V., Calloch, S., Charrier, P.: Determination of dissipated energy fields from temperature mappings on a rubber-like structural sample: experiments and comparison to numerical simulations. Mech. Mater. 80, 113–123 (2015). doi:10.1016/j.mechmat.2014.09.010. http://www.sciencedirect.com/science/article/pii/S0167663614001793

  38. 38.

    Chrysochoos, A.: Thermomechanical analysis of the cyclic behavior of materials. Procedia IUTAM 4, 15–26 (2012). doi:10.1016/j.piutam.2012.05.003. http://www.sciencedirect.com/science/article/pii/S2210983812000272. Symposium on Full-field Measurements and Identification in Solid Mechanics

  39. 39.

    Chrysochoos, A., Louche, H.: An infrared image processing to analyse the calorific effects accompanying strain localisation. Int. J. Eng. Sci. 38(16), 1759–1788 (2000). doi:10.1016/S0020-7225(00)00002-1. http://www.sciencedirect.com/science/article/pii/S0020722500000021

  40. 40.

    Munier, R., Doudard, C., Calloch, S., Weber, B.: Determination of high cycle fatigue properties of a wide range of steel sheet grades from self-heating measurements. Int. J. Fatigue 63, 46–61 (2014). doi:10.1016/j.ijfatigue.2014.01.004. http://www.sciencedirect.com/science/article/pii/S014211231400005X

  41. 41.

    Bernasconi, A., Cosmi, F., Hine, P.: Analysis of fibre orientation distribution in short fibre reinforced polymers: a comparison between optical and tomographic methods. Compos. Sci. Technol. 72(16), 2002–2008 (2012). doi:10.1016/j.compscitech.2012.08.018. http://www.sciencedirect.com/science/article/pii/S0266353812003211

  42. 42.

    Fischer, G., Eyerer, P.: Measuring spatial orientation of short fiber reinforced thermoplastics by image analysis. Polym. Compos. 9(4), 297–304 (1988). doi:10.1002/pc.750090409

    Article  Google Scholar 

  43. 43.

    Le Saux, V., Marco, Y., Calloch, S., Doudard, C., Charrier, P.: Fast evaluation of the fatigue lifetime of rubber-like materials based on a heat build-up protocol and micro-tomography measurements. Int. J. Fatigue 32(10), 1582–1590 (2010). doi:10.1016/j.ijfatigue.2010.02.014. http://www.sciencedirect.com/science/article/pii/S0142112310000538

  44. 44.

    Marco, Y., Masquelier, I., Le Saux, V., Charrier, P.: Fast prediction of the Wohler curve from thermal measurements for a wide range of NR and SBR compounds. Rubber Chem. Technol. American Chemical Society, Washington, DC (2016, in press)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leonell Serrano.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serrano, L., Marco, Y., Le Saux, V. et al. Fast prediction of the fatigue behavior of short-fiber-reinforced thermoplastics based on heat build-up measurements: application to heterogeneous cases. Continuum Mech. Thermodyn. 29, 1113–1133 (2017). https://doi.org/10.1007/s00161-017-0561-2

Download citation

Keywords

  • Short-fiber-reinforced thermoplastics
  • Fatigue
  • Thermal measurements