Skip to main content
Log in

Wave equation for generalized Zener model containing complex order fractional derivatives

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We study waves in a viscoelastic rod whose constitutive equation is of generalized Zener type that contains fractional derivatives of complex order. The restrictions following from the Second Law of Thermodynamics are derived. The initial boundary value problem for such materials is formulated and solution is presented in the form of convolution. Two specific examples are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amendola, G., Fabrizio, M., Golden, J.M.: Thermodynamics of Materials with Memory. Springer, New York (2012)

    Book  MATH  Google Scholar 

  2. Atanacković, T.M.: A modified Zener model of viscoelastic body. Contin. Mech. Thermodyn. 14, 137–148 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Atanacković, T.M., Janev, M., Konjik, S., Pilipović, S., Zorica, D.: Vibrations of an elastic rod on a viscoelastic foundation of complex fractional kelvin-voigt type. Meccanica 50(7), 685–704 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Atanacković, T.M., Konjik, S., Oparnica, L., Zorica, D.: Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods. In: Abstr. Appl. Anal., vol. 2011, p. 975694 (2011)

  5. Atanacković, T.M., Konjik, S., Pilipović, S., Zorica, D.: Complex order fractional derivatives in viscoelasticity. Mech. Time Depend. Mater. 20, 175–195 (2016)

    Article  ADS  Google Scholar 

  6. Atanacković, T.M., Pilipović, S., Zorica, D.: Distributed-order fractional wave equation on a finite domain. Creep and forced oscillations of a rod. Contin. Mech. Thermodyn. 23, 305–318 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Atanacković, T.M., Pilipović, S., Zorica, D.: Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod. Int. J. Eng. Sci. 49, 175–190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Atanacković, T.M., Pilipović, S., Stanković, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. Wiley-ISTE, London (2014)

    Book  MATH  Google Scholar 

  9. Atanacković, T.M., Pilipović, S., Stanković, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles. Wiley-ISTE, London (2014)

    Book  MATH  Google Scholar 

  10. Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30(1), 133–155 (1986)

    Article  ADS  MATH  Google Scholar 

  11. Doetsch, G.: Handbuch der Laplace-Transformationen I. Birkhäuser, Basel (1950)

    Book  MATH  Google Scholar 

  12. Franchi, F., Lazzari, B., Nibbi, R.: Mathematical models for the non-isothermal Johnson–Segalman viscoelasticity in porous media: stability and wave propagation. Math. Methods Appl. Sci. 38, 4075–4087 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Hanyga, A.: Fractional-order relaxation laws in non-linear viscoelasticity. Contin. Mech. Thermodyn. 19, 25–36 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Hanyga, A.: Wave propagation in anisotropic viscoelasticity. J. Elast. 122(2), 231–254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Konjik, S., Oparnica, Lj, Zorica, D.: Waves in fractional Zener type viscoelastic media. J. Math. Anal. Appl. 365(1), 259–268 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lion, A.: On the thermodynamics of fractional damping elements. Contin. Mech. Thermodyn. 9, 83–96 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Love, E.R.: Fractional derivatives of imaginary order. J. Lond. Math. Soc. 2–3(2), 241–259 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  19. Makris, N., Constantinou, M.: Fractional-derivative Maxwell model for viscous dampers. J. Struct. Eng. 117, 2708–2724 (1991)

    Article  Google Scholar 

  20. Makris, N., Constantinou, M.: Spring-viscous damper systems for combined seismic and vibration isolation. Earthq. Eng. Struct. Dyn. 21, 649–664 (1992)

    Article  Google Scholar 

  21. Makris, N., Constantinou, M.: Models of viscoelasticity with complex-order derivatives. J. Eng. Mech. 119(7), 1453–1464 (1993)

    Article  Google Scholar 

  22. Podlubny, I.: Fractional Differential Equations, Volume 198 of Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)

    Google Scholar 

  23. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives—Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)

    MATH  Google Scholar 

  24. Tamaogi, T., Sogabe, Y.: Longitudinal wave propagation including high frequency component in viscoelastic bars. In: Song, B., Lamberson, L., Casem, D., Kimberley, J. (eds.) Dynamic Behavior of Materials, Volume 1 Proceedings of the 2015 Annual Conference on Experimental and Applied Mechanics, pp. 75–80. Springer (2016)

  25. Wang, Y.: Generalized viscoelastic wave equation. Geophys. J. Int. 204, 1216–1221 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanja Konjik.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanacković, T.M., Janev, M., Konjik, S. et al. Wave equation for generalized Zener model containing complex order fractional derivatives. Continuum Mech. Thermodyn. 29, 569–583 (2017). https://doi.org/10.1007/s00161-016-0548-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0548-4

Keywords

Navigation