Skip to main content
Log in

Nonlinear heat-transport equation beyond Fourier law: application to heat-wave propagation in isotropic thin layers

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

By means of a nonlinear generalization of the Maxwell–Cattaneo–Vernotte equation, on theoretical grounds we investigate how nonlinear effects may influence the propagation of heat waves in isotropic thin layers which are not laterally isolated from the external environment. A comparison with the approach of the Thermomass Theory is made as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, C., Okawa, D., Garcia, H., Majumdar, A., Zettl, A.: Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101, 075903 (2008)

    Article  ADS  Google Scholar 

  2. Tzou, D.Y.: Macro to Micro-scale Heat Transfer. The Lagging Behaviour. Taylor and Francis, New York (1997)

    Google Scholar 

  3. Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Non-equilibrium Thermodynamics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  4. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, 4th edn. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  5. Struchtrup, H.: Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory—Interaction of Mechanics and Mathematics. Springer, New York (2005)

    MATH  Google Scholar 

  6. Banach, Z., Larecki, W.: Nine-moment phonon hydrodynamics based on the maximum-entropy closure: one-dimensional flow. J. Phys. A Math. Gen. 38, 8781–8802 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Larecki, W., Banach, Z.: Consistency of the phenomenological theories of wave-type heat transport with the hydrodynamics of a phonon gas. J. Phys. A Math. Theor. 43, 385501 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Hua, Y.-C., Cao, B.-Y.: Phonon ballistic-diffusive heat conduction in silicon nanofilms by Monte Carlo simulations. Int. J. Heat Mass Transf. 78, 755–759 (2014)

  9. Hua, Y.-C., Cao, B.-Y.: Transient in-plane thermal transport in nanofilms with internal heating. Proc. R. Soc. A 472, 20150811 (2016)

  10. Pop, E.: Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010)

    Article  Google Scholar 

  11. Márkus, F., Gambár, K.: Heat propagation dynamics in thin silicon layers. Int. J. Heat Mass Transf. 56, 495–500 (2013)

    Article  Google Scholar 

  12. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  13. Balandin, A.A., Ghosh, S., Baoand, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.-N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    Article  ADS  Google Scholar 

  14. Cepellotti, A., Fugallo, G., Paulatto, L., Lazzeri, M., Mauri, F., Marzari, N.: Phonon hydrodynamics in two-dimensional materials. Nat. Comm. 6, 6400 (2015)

    Article  ADS  Google Scholar 

  15. Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlocal effects and second sound in a nonequilibrium steady state. Phys. Rev. B 79, 014303 (2009)

    Article  ADS  Google Scholar 

  16. Jou, D., Cimmelli, V.A., Sellitto, A.: Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers. Phys. Lett. A 373, 4386–4392 (2009)

    Article  ADS  MATH  Google Scholar 

  17. Sellitto, A., Cimmelli, V.A., Jou, D.: Mesoscopic Theories of Heat Transport in Nanosystems, Vol. 6 of SEMA-SIMAI Springer Series. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  18. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  19. Cattaneo, C.: Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. C. R. Acad. Sci. 247, 431–433 (1958)

    MathSciNet  Google Scholar 

  20. Vernotte, P.: Les paradoxes de la théorie continue de l’équation de la chaleur. C. R. Acad. Sci. 246, 3154–3155 (1958)

    MathSciNet  MATH  Google Scholar 

  21. Cimmelli, V.A., Jou, D., Ruggeri, T., Ván, P.: Entropy principle and recent results in non-equilibrium theories. Entropy 16, 1756–1807 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Levermore, C.D.: Relating Eddington factors to flux limiters. J. Quant. Spectrosc. Radiat. Transf. 31, 149–160 (1984)

    Article  ADS  Google Scholar 

  23. Anile, A.M., Pennisi, S., Sammartino, M.: A thermodynamical approach to Eddington factors. J. Math. Phys. 32, 544–550 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Sellitto, A., Cimmelli, V.A., Jou, D.: Analysis of three nonlinear effects in a continuum approach to heat transport in nanosystems. Phys. D 241, 1344–1350 (2012)

    Article  MATH  Google Scholar 

  25. Gyarmati, I.: On the wave approach of thermodynamics and some problems of non-linear theories. J. Non-equilib. Thermodyn. 2, 236–260 (1977)

    Article  ADS  Google Scholar 

  26. Straughan, B.: Heat Waves. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  27. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Joseph, D.D., Preziosi, L.: Addendum to the paper "heat waves" [Rev. Mod. Phys. 61, 41 (1989)]. Rev. Mod. Phys. 62, 375–391 (1990)

    Article  ADS  Google Scholar 

  29. Dreyer, W., Struchtrup, H.: Heat pulse experiments revisited. Contin. Mech. Thermodyn. 5, 3–50 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  30. Dong, Y., Cao, B.-Y., Guo, Z.-Y.: Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics. J. Appl. Phys. 110, 063504 (2011)

    Article  ADS  Google Scholar 

  31. Ván, P., Fülöp, T.: Universality in heat conduction theory: weakly nonlocal thermodynamics. Ann. Phys. 524, 470–478 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Serdyukov, S.I.: Generalized temperature and non-classical heat conduction in rigid bodies. J. Non-equilib. Thermodyn. 38, 81–96 (2013)

    Article  ADS  MATH  Google Scholar 

  33. Larecki, W., Banach, Z.: Influence of nonlinearity of the phonon dispersion relation in wave velocities in the four-moment maximum entropy phonon hydrodynamics. Phys. D 266, 65–79 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kovács, R., Ván, P.: Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transf. 83, 613–620 (2015)

    Article  Google Scholar 

  35. Persson, B.N.J., Volokitin, A.I., Ueba, H.: Phononic heat transfer across an interface: thermal boundary resistance. J. Phys. Condens. Matter 30, 045009 (2011)

    Article  ADS  Google Scholar 

  36. Machrafi, H., Lebon, G., Jou, D.: Thermal rectifier efficiency of various bulk nanoporous silicon devices. Int. J. Heat Mass Transf. 97, 603–610 (2016)

    Article  Google Scholar 

  37. Schilling, F.R.: A transient technique to measure thermal diffusivity at elevated temperatures. Eur. J. Mineral. 11, 1115–1124 (1999)

    Article  Google Scholar 

  38. Cimmelli, V.A.: Different thermodynamic theories and different heat conduction laws. J. Non-equilib. Thermodyn. 34, 299–333 (2009)

    Article  ADS  MATH  Google Scholar 

  39. Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlinear evolution and stability of the heat flow in nanosystems: beyond linear phonon hydrodynamics. Phys. Rev. B 82, 184302 (2010)

    Article  ADS  Google Scholar 

  40. Cimmelli, V.A., Sellitto, A., Triani, V.: A new thermodynamic framework for second-grade Korteweg-type viscous fluids. J. Math. Phys. 50, 053101 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Coleman, B.D., Fabrizio, M., Owen, D.R.: On the thermodynamics of second sound in dielectric crystals. Arch. Ration. Mech. Anal. 80, 135–158 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  42. Casas-Vázquez, J., Jou, D.: Nonequilibrium equations of state and thermal waves. Acta Phys. Hung. 66, 99–115 (1989)

    Google Scholar 

  43. Jou, D., Sellitto, A.: Focusing of heat pulses along nonequilibrium nanowires. Phys. Lett. A 374, 313–318 (2009)

    Article  ADS  MATH  Google Scholar 

  44. Wang, M., Yang, N., Guo, Z.-Y.: Non-Fourier heat conductions in nanomaterials. J. Appl. Phys. 110, 064310 (2011)

    Article  ADS  Google Scholar 

  45. Dong, Y., Cao, B.-Y., Guo, Z.-Y.: General expression for entropy production in transport processes based on the thermomass model. Phys. Rev. E 85, 061107 (2012)

    Article  ADS  Google Scholar 

  46. Sellitto, A., Cimmelli, V.A.: A continuum approach to thermomass theory. J. Heat Transf. T. ASME 134, 112402 (2012)

    Article  Google Scholar 

  47. Sellitto, A., Cimmelli, V.A.: Flux limiters in radial heat transport in silicon nanolayers. J. Heat Transf. T. ASME 136, 071301 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sellitto.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellitto, A., Tibullo, V. & Dong, Y. Nonlinear heat-transport equation beyond Fourier law: application to heat-wave propagation in isotropic thin layers. Continuum Mech. Thermodyn. 29, 411–428 (2017). https://doi.org/10.1007/s00161-016-0538-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0538-6

Keywords

Navigation