Skip to main content
Log in

Constitutive equations of a tensorial model for strain-induced damage of metals based on three invariants

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

On the basis of the physical concepts of void formation, nucleation, and growth, generalized constitutive equations are formulated for a tensorial model of plastic damage in metals based on three invariants. The multiplicative decomposition of the metric transformation tensor and a thermodynamically consistent formulation of constitutive relations leads to a symmetric second-order damage tensor with a clear physical meaning. Its first invariant determines the damage related to plastic dilatation of the material due to growth of the voids. The second invariant of the deviatoric damage tensor is related to the change in void shape. The third invariant of the deviatoric tensor describes the impact of the stress state on damage (Lode angle), including the effect of rotating the principal axes of the stress tensor (Lode angle change). The introduction of three measures with related physical meaning allows for the description of kinetic processes of strain-induced damage with an equivalent parameter in a three-dimensional vector space, including the critical condition of ductile failure. Calculations were performed by using experimentally determined material functions for plastic dilatation and deviatoric strain at the mesoscale, as well as three-dimensional graphs for plastic damage of steel DC01. The constitutive parameter was determined from tests in tension, compression, and shear by using scanning electron microscopy, which allowed to vary the Lode angle over the full range of its values . In order to construct the three-dimensional plastic damage curve for a range of triaxiality parameters \(-1 \le ST \le 1\) and of Lode angles , we used our own, as well as systematized published experimental data. A comparison of calculations shows a significant effect of the third invariant (Lode angle) on equivalent damage. The measure of plastic damage, based on three invariants, can be useful for assessing the quality of metal mesostructure produced during metal forming processes. In many processes of metal sheet forming the material experiences, a non-proportional loading accompanied by rotating the principal axes of the stress tensor and a corresponding change of Lode angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Algarni, M., Bai, Y., Choi, Y.: A study of inconel 718 dependency on stress triaxiality and lode angle in plastic deformation and ductile fracture. Eng. Fract. Mech. 147, 140–157 (2015)

    Article  Google Scholar 

  2. Bammann, D., Solanki, K.: On kinematic, thermodynamic, and kinetic coupling of a damage theory for polycrystalline material. Int. J. Plast 26(6), 775–793 (2010)

    Article  MATH  Google Scholar 

  3. Bao, Y., Wierzbicki, T.: On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 46(1), 81–98 (2004)

    Article  Google Scholar 

  4. Bao, Y., Wierzbicki, T.: On the cut-off value of negative triaxiality for fracture. Eng. Fract. Mech. 72(7), 1049–1069 (2005)

    Article  Google Scholar 

  5. Benzerga, A., Surovik, D., Keralavarma, S.: On the path-dependence of the fracture locus in ductile materials—analysis. Int. J. Plast. 37, 157–170 (2012)

    Article  Google Scholar 

  6. Betten, J.: Damage tensors in continuum mechanics. Journal de Mécanique Théorique et Appliquée 2(1), 13–32 (1983)

    MATH  Google Scholar 

  7. Bogatov, A., Mizhiritskiy, O., Smirnov, S.: Resource of Metals Plasticity During Forming. Metallurgy, Moscow (1984)

    Google Scholar 

  8. Bonora, N., Gentile, D., Pirondi, A., Newaz, G.: Ductile damage evolution under triaxial state of stress: theory and experiments. Int. J. Plast. 21(5), 981–1007 (2005)

    Article  MATH  Google Scholar 

  9. Brünig, M.: A framework for large strain elastic–plastic damage mechanics based on metric transformations. Int. J. Eng. Sci. 39(9), 1033–1056 (2001)

    Article  MATH  Google Scholar 

  10. Brünig, M.: An anisotropic ductile damage model based on irreversible thermodynamics. Int. J. Plast. 19(10), 1679–1713 (2003)

    Article  MATH  Google Scholar 

  11. Brünig, M., Brenner, D., Gerke, S.: Stress state dependence of ductile damage and fracture behavior: experiments and numerical simulations. Eng. Fract. Mech. 141, 152–169 (2015)

    Article  Google Scholar 

  12. Castañeda, P., Zaidman, M.: Constitutive models for porous materials with evolving microstructure. J. Mech. Phys. Solids 42(9), 1459–1497 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chaboche, J.L.: Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage. Int. J. Damage Mech. 2(4), 311–329 (1993)

    Article  Google Scholar 

  14. DIN EN 10130: Cold rolled low carbon steel flat products for cold forming—technical delivery conditions (2007)

  15. DIN EN 10338: Hot rolled and cold rolled non-coated products of multiphase steels for cold forming—technical delivery conditions (2015)

  16. Driemeier, L., Brünig, M., Micheli, G., Alves, M.: Experiments on stress-triaxiality dependence of material behavior of aluminum alloys. Mech. Mater. 42(2), 207–217 (2010)

    Article  Google Scholar 

  17. Dunand, M., Maertens, A.P., Luo, M., Mohr, D.: Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading—part I: plasticity. Int. J. Plast. 36, 34–49 (2012)

    Article  Google Scholar 

  18. Einav, I., Houlsby, G.T., Nguyen, G.D.: Coupled damage and plasticity models derived from energy and dissipation potentials. Int. J. Solids Struct. 44(7), 2487–2508 (2007)

    Article  MATH  Google Scholar 

  19. Gologanu, M., Leblond, J., Devaux, J.: Approximate models for ductile metals containing non-spherical voids—case of axisymmetric prolate ellipsoidal cavities. J. Mech. Phys. Solids 41, 1723–1754 (1993)

    Article  ADS  MATH  Google Scholar 

  20. Green, R.: A plasticity theory for porous solids. Int. J. Mech. Sci. 14(4), 215–224 (1972)

    Article  MATH  Google Scholar 

  21. Gurson, A.: Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)

    Article  Google Scholar 

  22. Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, Oxford (1950)

    MATH  Google Scholar 

  23. Hosokawa, A., Wilkinson, D.S., Kang, J., Maire, E.: Onset of void coalescence in uniaxial tension studied by continuous X-ray tomography. Acta Mater. 61(4), 1021–1036 (2013)

    Article  Google Scholar 

  24. Kachanov, L.M.: Introduction to Continuum Damage Mechanics. Mechanics of Elastic Stability. Springer, Dordrecht (1986)

    Book  MATH  Google Scholar 

  25. Kachanov, L.M.: Fundamentals of the Theory of Plasticity. Dover Publications, Mineola, New York (2004)

    Google Scholar 

  26. Khan, A.S., Liu, H.: A new approach for ductile fracture prediction on al 2024–t351 alloy. Int. J. Plast. 35, 1–12 (2012)

    Article  Google Scholar 

  27. Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. Courier Corporation, Mineola, New York (2000)

    MATH  Google Scholar 

  28. Krajcinovic, D.: Damage mechanics: accomplishments, trends and needs. Int. J. Solids Struct. 37(1–2), 267–277 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer, Berlin (2005)

    Google Scholar 

  30. Li, Y., Luo, M., Gerlach, J., Wierzbicki, T.: Prediction of shear-induced fracture in sheet metal forming. J. Mater. Process. Technol. 210(14), 1858–1869 (2010)

    Article  Google Scholar 

  31. Luo, M., Dunand, M., Mohr, D.: Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading—part II: ductile fracture. Int. J. Plast. 32–33, 36–58 (2012)

    Article  Google Scholar 

  32. McClintock, F.: A criterion for ductile fracture by growth of holes. J. Appl. Mech. 90, 363–371 (1968)

    Article  Google Scholar 

  33. Murakami, S.: Mechanical modeling of material damage. J. Appl. Mech. 55(2), 280–286 (1988)

    Article  ADS  Google Scholar 

  34. Papasidero, J., Doquet, V., Mohr, D.: Ductile fracture of aluminum 2024–t351 under proportional and non-proportional multi-axial loading: Bao–Wierzbicki results revisited. Int. J. Solids Struct. 69–70, 459–474 (2015)

    Article  Google Scholar 

  35. Prager, W., Hodge, P.: Theory of Perfectly Plastic Solids. Wiley, New York (1951)

    MATH  Google Scholar 

  36. Pugh, H.L.D.: Mechanical Behaviour of Materials Under Pressure. Elsevier, Amsterdam (1973)

    Google Scholar 

  37. Rabotnov, Y.N.: Creep Problems in Structural Members, vol. 7. North-Holland Pub. Co., Amsterdam (1969)

    MATH  Google Scholar 

  38. Rice, J., Tracey, D.: On ductile enlargement of voids in triaxial stress field. J. Mech. Phys. Solids 17, 201–217 (1969)

    Article  ADS  Google Scholar 

  39. Sedov, L.: A Course in Continuum Mechanics. Wolters-Noordhoff, Groningen (1971)

    MATH  Google Scholar 

  40. Steinmann, P., Carol, I.: A framework for geometrically nonlinear continuum damage mechanics. Int. J. Eng. Sci. 36(15), 1793–1814 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tutyshkin, N., Gvozdev, A., Tregubov, V.: Kompleksnye Zadachi Teorii Plastichnosti (Complex Problems in Plasticity Theory). Tul’skiy Polygraphist Publ., Tula (2001)

    Google Scholar 

  42. Tutyshkin, N.D., Müller, W.H., Wille, R., Zapara, M.: Strain-induced damage of metals under large plastic deformation: theoretical framework and experiments. Int. J. Plast. 59, 133–151 (2014)

    Article  Google Scholar 

  43. Voyiadjis, G.Z., Park, T.: The kinematics of damage for finite-strain elasto-plastic solids. Int. J. Eng. Sci. 37(7), 803–830 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xue, L.: Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. Int. J. Solids Struct. 44(16), 5163–5181 (2007)

    Article  MATH  Google Scholar 

  45. Yokobori, T.: An Interdisciplinary Approach to Fracture and Strength of Solids. Gordon & Breach, Pub., New York (1968)

    MATH  Google Scholar 

  46. Zapara, M., Tutyshkin, N.D., Müller, W.H., Wille, R.: Constitutive equations of a tensorial model for ductile damage of metals. Contin. Mech. Thermodyn. 24(4–6), 697–717 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  47. Zapara, M.A., Tutyshkin, N.D., Müller, W.H., Weinberg, K., Wille, R.: A physico-mechanical approach to modeling of metal forming processes—part I: theoretical framework. Contin. Mech. Thermodyn. 20(4), 231–254 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Zapara, M.A., Tutyshkin, N.D., Müller, W.H., Weinberg, K., Wille, R.: A physico-mechanical approach to modeling of metal forming processes—part II: damage analysis in processes with plastic flow of metals. Contin. Mech. Thermodyn. 20(8), 509–521 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Zapara, M.A., Tutyshkin, N.D., Müller, W.H., Wille, R.: Experimental study and modeling of damage of al alloys using tensor theory. Contin. Mech. Thermodyn. 22(2), 99–120 (2010)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Lofink.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutyshkin, N.D., Lofink, P., Müller, W.H. et al. Constitutive equations of a tensorial model for strain-induced damage of metals based on three invariants. Continuum Mech. Thermodyn. 29, 251–269 (2017). https://doi.org/10.1007/s00161-016-0529-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0529-7

Keywords

Navigation