Skip to main content
Log in

The asymptotic homogenization elasticity tensor properties for composites with material discontinuities

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The classical asymptotic homogenization approach for linear elastic composites with discontinuous material properties is considered as a starting point. The sharp length scale separation between the fine periodic structure and the whole material formally leads to anisotropic elastic-type balance equations on the coarse scale, where the arising fourth rank operator is to be computed solving single periodic cell problems on the fine scale. After revisiting the derivation of the problem, which here explicitly points out how the discontinuity in the individual constituents’ elastic coefficients translates into stress jump interface conditions for the cell problems, we prove that the gradient of the cell problem solution is minor symmetric and that its cell average is zero. This property holds for perfect interfaces only (i.e., when the elastic displacement is continuous across the composite’s interface) and can be used to assess the accuracy of the computed numerical solutions. These facts are further exploited, together with the individual constituents’ elastic coefficients and the specific form of the cell problems, to prove a theorem that characterizes the fourth rank operator appearing in the coarse-scale elastic-type balance equations as a composite material effective elasticity tensor. We both recover known facts, such as minor and major symmetries and positive definiteness, and establish new facts concerning the Voigt and Reuss bounds. The latter are shown for the first time without assuming any equivalence between coarse and fine-scale energies (Hill’s condition), which, in contrast to the case of representative volume elements, does not identically hold in the context of asymptotic homogenization. We conclude with instructive three-dimensional numerical simulations of a soft elastic matrix with an embedded cubic stiffer inclusion to show the profile of the physically relevant elastic moduli (Young’s and shear moduli) and Poisson’s ratio at increasing (up to 100 %) inclusion’s volume fraction, thus providing a proxy for the design of artificial elastic composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auriault, J.L., Boutin, C., Geindreau, C.: Homogenization of Coupled Phenomena in Heterogenous Media, vol. 149. Wiley, Hoboken (2010)

    Google Scholar 

  3. Bakhvalov, N., Panasenko, G.: Homogenisation Averaging Processes in Periodic Media. Springer, Netherlands (1989)

    Book  MATH  Google Scholar 

  4. Boresi, A.P., Chong, K., Lee, J.D.: Elasticity in Engineering Mechanics. Wiley, Washington (2010)

    Book  MATH  Google Scholar 

  5. Bruna, M., Chapman, S.J.: Diffusion in spatial varying porous media. SIAM J. Appl. Math. 75(4), 1648–1674 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burridge, R., Keller, J.: Poroelasticity equations derived from microstructure. J. Acoust. Soc. Am. 70, 1140–1146 (1981)

    Article  ADS  MATH  Google Scholar 

  7. Cherkaev, A., Kohn, R.: Topics in the Mathematical Modelling of Composite Materials. Springer, New York (1997)

    Book  MATH  Google Scholar 

  8. Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  9. Constantinescu, A., Korsunsky, A.: Elasticity with Mathematica: An Introduction to Continuum Mechanics and Linear Elasticity. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  10. Dalwadi, M.P., Griffiths, I.M., Bruna, M.: Understanding how porosity gradients can make a better filter using homogenization theory. In: Proceedings of the Royal Society A, vol. 471, p. 20150464. The Royal Society (2015)

  11. Den Toonder, J., Van Dommelen, J., Baaijens, F.: The relation between single crystal elasticity and the effective elastic behaviour of polycrystalline materials: theory, measurement and computation. Modell. Simul. Mater. Sci. Eng. 7(6), 909 (1999)

    Article  ADS  Google Scholar 

  12. Eshelby, J.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 241, 376–396 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Francfort, G.A., Murat, F.: Homogenization and optimal bounds in linear elasticity. Arch. Ration. Mech. Anal. 94(4), 307–334 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grimal, Q., Raum, K., Gerisch, A., Laugier, P.: A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Biomech. Model. Mechanobiol. 10(6), 925–937 (2011)

    Article  Google Scholar 

  15. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Hazanov, S.: Hill condition and overall properties of composites. Arch. Appl. Mech. 68(6), 385–394 (1998)

    Article  ADS  MATH  Google Scholar 

  17. Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963)

    Article  ADS  MATH  Google Scholar 

  18. Hill, R.: New derivations of some elastic extremum principles. In: Progress in applied mechanics, The Prager anniversary volume, pp. 99–106. Macmillan, New York (1963)

  19. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965)

    Article  ADS  Google Scholar 

  20. Holmes, M.: Introduction to Perturbation Method. Springer, New York (1995)

    Book  MATH  Google Scholar 

  21. Hori, M., Nemat-Nasser, S.: On two micromechanics theories for determining micro–macro relations in heterogeneous solids. Mech. Mater. 31(10), 667–682 (1999)

    Article  Google Scholar 

  22. Hull, D., Clyne, T.: An Introduction to Composite Materials. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  23. Jones, R.M.: Mechanics of Composite Materials. CRC Press, Boca Rotan (1998)

    Google Scholar 

  24. Kohn, R.V., Lipton, R.: Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials. Arch. Ration. Mech. Anal. 102(4), 331–350 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mei, C.C., Vernescu, B.: Homogenization Methods for Multiscale Mechanics. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  26. Milton, G.W.: The Theory of Composites, vol. 6. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  27. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Article  Google Scholar 

  28. Murat, F.: H-convergence, séminaire danalyse fonctionnelle et numérique (1977/1978). Université dAlger, Multigraphed (1978)

    Google Scholar 

  29. Papanicolau, G., Bensoussan, A., Lions, J.L.: Asymptotic Analysis for Periodic Structures. Elsevier, Amsterdam (1978)

    Google Scholar 

  30. Peerlings, R., Fleck, N.: Computational evaluation of strain gradient elasticity constants. Int. J. Multiscale Comput. Eng. 2(4), 599–619 (2004)

    Article  Google Scholar 

  31. Penta, R., Ambrosi, D., Quarteroni, A.: Multiscale homogenization for fluid and drug transport in vascularized malignant tissues. Math. Models Methods Appl. Sci. 25(1), 79–108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Penta, R., Ambrosi, D., Shipley, R.J.: Effective governing equations for poroelastic growing media. Q. J. Mech. Appl. Math. 67(1), 69–91 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Penta, R., Gerisch, A.: Investigation of the potential of asymptotic homogenization for elastic composites via a three-dimensional computational study. Comput. Vis. Sci. 17(4), 185–201 (2016)

    Article  MathSciNet  Google Scholar 

  34. Penta, R., Raum, K., Grimal, Q., Schrof, S., Gerisch, A.: Can a continuous mineral foam explain the stiffening of aged bone tissue? A micromechanical approach to mineral fusion in musculoskeletal tissues. Bioinspir. Biomim. 11(3), 1–15 (2016)

    Article  Google Scholar 

  35. Qu, J.: The effect of slightly weakened interfaces on the overall elastic properties of composite materials. Mech. Mater. 14(4), 269–281 (1993)

    Article  Google Scholar 

  36. Reuss, A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 49–58 (1929)

    Article  ADS  MATH  Google Scholar 

  37. Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127. Springer, Verlag Berlin Heidelberg (1980)

  38. Segurado, J., Llorca, J.: A numerical approximation to the elastic properties of sphere-reinforced composites. J. Mech. Phys. Solids 50(10), 2107–2121 (2002)

    Article  ADS  MATH  Google Scholar 

  39. Shipley, R.J., Chapman, J.: Multiscale modelling of fluid and drug transport in vascular tumors. Bull. Math. Biol. 72, 1464–1491 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Slawinski, M.A.: Waves and Rays in Elastic Continua. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  41. Tartar, L, Estimation de coefficients homogenises. In: Computing Methods in Applied Sciences and Engineering. Third International Symposium, December 5–9, 1977. Part 1, Lecture Notes in Mathematics, vol. 704, pp. 364–373. Springer, Verlag Berlin Heidelberg (1979). doi:10.1007/BFb0063609

  42. Tiburtius, S., Schrof, S., Molnár, F., Varga, P., Peyrin, F., Grimal, Q., Raum, K., Gerisch, A.: On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment. Biomech. Model. Mechanobiol. 13, 1003–1023 (2014)

    Article  Google Scholar 

  43. Voigt, W.: Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der Physik und Chemie, Neue Folge 38, 573–587 (1888)

    MATH  Google Scholar 

  44. Zohdi, T.I., Wriggers, P.: An Introduction to Computational Micromechanics, vol. 20. Springer, Berlin (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimondo Penta.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penta, R., Gerisch, A. The asymptotic homogenization elasticity tensor properties for composites with material discontinuities. Continuum Mech. Thermodyn. 29, 187–206 (2017). https://doi.org/10.1007/s00161-016-0526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0526-x

Keywords

Navigation