An existence result for a model of complete damage in elastic materials with reversible evolution

Abstract

In this paper, we consider a model describing evolution of damage in elastic materials, in which stiffness completely degenerates once the material is fully damaged. The model is written by using a phase transition approach, with respect to the damage parameter. In particular, a source of damage is represented by a quadratic form involving deformations, which vanishes in the case of complete damage. Hence, an internal constraint is ensured by a maximal monotone operator. The evolution of damage is considered “reversible”, in the sense that the material may repair itself. We can prove an existence result for a suitable weak formulation of the problem, rewritten in terms of a new variable (an internal stress). Some numerical simulations are presented in agreement with the mathematical analysis of the system.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bangerth, W., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., Young, T.D.: The deal.II library, version 8.2. Arch. Numer. Softw. 3, 1–8 (2015)

  2. 2.

    Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden (1976)

    Google Scholar 

  3. 3.

    Benzarti, K., Freddi, F., Frémond, M.: A damage model to predict the durability of bonded assemblies. Part I: debonding behavior of FRP strengthened concrete structures. Constr. Build. Mater. 25(2), 547–555 (2011)

    Article  Google Scholar 

  4. 4.

    Bonetti, E., Bonfanti, G., Rossi, R.: Analysis of a temperature-dependent model for adhesive contact with friction. Phys. D 285, 42–62 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Bonetti, E., Schimperna, G.: Local existence for Frémond’s model of damage in elastic materials. Contin. Mech. Thermodyn. 16, 319–335 (2004)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Bonetti, E., Schimperna, G., Segatti, A.: On a doubly nonlinear model for the evolution of damaging in viscoelastic materials. J. Differ. Equ. 218, 91–116 (2005)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Bouchitté, G., Mielke, A., Roubicek, T.: A complete-damage problem at small strains. Z. Angew. Math. Phys. 60, 205–236 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Bourdin, B., Francfort, G., Marigo, J.J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Dal Maso, G., DeSimone, A., Mora, M.G., Morini, M.: A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Ration. Mech. Anal. 189, 469–544 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1997)

    Google Scholar 

  11. 11.

    Freddi, F., Frémond, M.: Damage in domains and interfaces: a coupled predictive theory. J. Mech. Mater. Struct. 1(7), 1205–1233 (2006)

    Article  Google Scholar 

  12. 12.

    Freddi, F., Royer-Carfagni, G.: Regularized variational theories of fracture: a unified approach. J. Mech. Phys. Solids 58, 1154–1174 (2010)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Freddi, F., Royer-Carfagni, G.: Plastic flow as an energy minimization problem. Numer. Exp. J. Elast. 116, 53–74 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Frémond, M.: Phase Change in Mechanics. Springer, Berlin (2012)

    Google Scholar 

  15. 15.

    Frémond, M., Kuttler, K., Shillor, M.: Existence and uniqueness of solutions for a dynamic one-dimensional damage model. J. Math. Anal. Appl. 229, 271–294 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Kraus, C., Bonetti, E., Heinemann, C., Segatti, A.: Modeling and analysis of a phase field system for damage and phase separation processes in solids. J. Differ. Equ. 258, 3928–3959 (2015)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Heinemann, C., Kraus, C.: Complete damage in linear elastic materials—modeling, weak formulation and existence results. Calc. Var. Partial Differ. Equ. 54, 217–250 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Kuhn, C., Schluter, A., Muller, R.: On degradation functions in phase field fracture models. Comput. Mater. Sci. 108, 374–384 (2015)

    Article  Google Scholar 

  19. 19.

    Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199, 2765–2778 (2010)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Mielke, A., Roubicek, T.: Rate-independent damage processes in nonlinear elasticity. Math. Models Methods Appl. Sci. 16, 177–209 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Mielke, A.: Complete-damage evolution based on energies and stresses. Discrete Contin. Dyn. Syst. Ser. S 4, 423–439 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Mielke, A., Roubicek, T., Thomas, M.: From damage to delamination in nonlinearly elastic materials at small strains. J. Elast. 109, 235–273 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Rocca, E., Rossi, R.: A degenerating PDE system for phase transitions and damage. Math. Models Methods Appl. Sci. 24, 1265–1341 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Roubicek, T.: Rate-independent processes in viscous solids at small strains. Math. Methods Appl. Sci. 32, 825–862 (2009)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Ruocci, G., Argoul, P., Benzarti, K., Freddi, F.: An improved damage modelling to deal with the variability of fracture mechanisms in FRP reinforced concrete structures. Int. J. Adhes. Adhes. 45(2), 7–20 (2013)

    Article  Google Scholar 

  26. 26.

    Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. 4(146), 65–96 (1987)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Zafran, M.: Spectral theory and interpolation operators. J. Funct. Anal. 36, 185–204 (1980)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elena Bonetti.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonetti, E., Freddi, F. & Segatti, A. An existence result for a model of complete damage in elastic materials with reversible evolution. Continuum Mech. Thermodyn. 29, 31–50 (2017). https://doi.org/10.1007/s00161-016-0520-3

Download citation

Keywords

  • Complete damage
  • Phase transition
  • Non-smooth PDE system
  • Existence result for weak solutions