Skip to main content

Advertisement

Log in

Material degradation due to moisture and temperature. Part 1: mathematical model, analysis, and analytical solutions

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The mechanical response, serviceability, and load-bearing capacity of materials and structural components can be adversely affected due to external stimuli, which include exposure to a corrosive chemical species, high temperatures, temperature fluctuations (i.e., freezing–thawing), cyclic mechanical loading, just to name a few. It is, therefore, of paramount importance in several branches of engineering—ranging from aerospace engineering, civil engineering to biomedical engineering—to have a fundamental understanding of degradation of materials, as the materials in these applications are often subjected to adverse environments. As a result of recent advancements in material science, new materials such as fiber-reinforced polymers and multi-functional materials that exhibit high ductility have been developed and widely used, for example, as infrastructural materials or in medical devices (e.g., stents). The traditional small-strain approaches of modeling these materials will not be adequate. In this paper, we study degradation of materials due to an exposure to chemical species and temperature under large strain and large deformations. In the first part of our research work, we present a consistent mathematical model with firm thermodynamic underpinning. We then obtain semi-analytical solutions of several canonical problems to illustrate the nature of the quasi-static and unsteady behaviors of degrading hyperelastic solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\rho \) :

Density of solid in deformed configuration \((\mathrm {kg}\,\mathrm {m}^{-3})\)

A :

Specific Helmholtz potential \((\mathrm {J}\,\mathrm {kg}^{-1})\)

\(\zeta \) :

Dissipation functional \((\mathrm {J}\,\mathrm {kg}^{-1}\,\mathrm {s}^{-1})\)

\(\psi \) :

Strain energy density functional \((\mathrm {J}\,\mathrm {m}^{-3})\)

\(\lambda \), \(\mu \) :

Lamé parameters \((\mathrm {Pa})\)

\(\kappa \) :

Bulk modulus \((\mathrm {Pa})\)

\(\mathbf {u}\) :

Displacement \((\mathrm {m})\)

\(\mathbf {v}\) :

Velocity \((\mathrm {m}\,\mathrm {s}^{-1})\)

\(\vartheta \) :

Temperature \((\mathrm {K})\)

c :

Concentration \((\hbox {l})\)

\(R_s\) :

Specific vapor constant \((\mathrm {J}\,\mathrm {kg}^{-1}\,\mathrm {K}^{-1})\)

\(c_p\) :

Heat capacity \((\mathrm {J}\,\mathrm {kg}^{-1}\,\mathrm {K}^{-1})\)

\(\mathbf {M}_{\vartheta \mathbf {E}}\) :

Thermal expansion tensor \((\mathrm {J}\,\mathrm {m}^{-3}\,\mathrm {K}^{-1})\)

\(\mathbf {M}_{c \mathbf {E}}\) :

Chemical expansion tensor \((\mathrm {J}\,\mathrm {m}^{-3})\)

\(d_{\vartheta c}\) :

Thermo–chemo coupled parameter \((\mathrm {J}\,\mathrm {kg}^{-1}\,\mathrm {K}^{-1})\)

\(\varkappa \) :

Specific chemical potential \((\mathrm {J}\,\mathrm {kg}^{-1})\)

\(\eta \) :

Specific entropy \((\mathrm {J}\,\mathrm {kg}^{-1}\,\mathrm {K}^{-1})\)

\(\mathbf {D}_{\vartheta \vartheta }\) :

Thermal diffusion tensor \((\mathrm {m}^2\,\mathrm {s}^{-1})\)

\(\mathbf {D}_{\varkappa \varkappa }\) :

Diffusivity tensor \((\mathrm {m}^2\,\mathrm {s}^{-1})\)

\(\mathbf {D}_{\vartheta \varkappa }\), \(\mathbf {D}_ {\varkappa \vartheta }\) :

Dufour–Soret effect tensors \((\mathrm {m}^2\,\mathrm {s}^{-1})\)

\(\mathbf {T}\) :

Cauchy stress \((\mathrm {Pa})\)

\(\mathbf {h}\) :

Diffusive flux vector \((\mathrm {kg}\,\mathrm {m}^{-2}\,\mathrm {s}^{-1})\)

\(\mathbf {q}\) :

Heat flux vector \((\mathrm {J}\,\mathrm {m}^{-2}\,\mathrm {s}^{-1})\)

h :

Volumetric source \((\mathrm {kg}\,\mathrm {m}^{-3}\,\mathrm {s}^{-1})\)

q :

Volumetric heat source \((\mathrm {J}\,\mathrm {m}^{-3}\,\mathrm {s}^{-1})\)

References

  1. ABAQUS/CAE/Standard, Version 6.14-1. Simulia, Providence. www.simulia.com (2014)

  2. Adler, S.B.: Chemical expansivity of electrochemical ceramics. J. Am. Ceram. Soc. 84, 2117–2119 (2001)

    Article  Google Scholar 

  3. Allam, S.M., Elbakry, H.M.F., Rabeai, A.G.: Behavior of one-way reinforced concrete slabs subjected to fire. Alex. Eng. J. 52, 749–761 (2013)

    Article  Google Scholar 

  4. ANSYS Multiphysics, Version 16.0. ANSYS, Inc., Canonsburg. www.ansys.com (2015)

  5. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (1995)

    Book  MATH  Google Scholar 

  6. Batchelor, A.W., Lam, L.N., Chandrasekaran, M.: Materials Degradation and Its Control by Surface Engineering, 3rd edn. Imperial College Press, London (2003)

    Book  Google Scholar 

  7. Bhowmick, S., Shenoy, V.B.: Effect of strain on the thermal conductivity of solids. J. Chem. Phys. 125, 164513 (2006)

    Article  ADS  Google Scholar 

  8. Björk, F., Eriksson, C.A., Karlsson, S., Khabbaz, F.: Degradation of components in flooring systems in humid and alkaline environments. Constr. Build. Mater. 17, 213–221 (2003)

    Article  Google Scholar 

  9. Blond, E., Richet, N.: Thermomechanical modelling of ion-conducting membrane for oxygen separation. J. Eur. Ceram. Soc. 28, 793–801 (2008)

    Article  Google Scholar 

  10. Bouadi, H., Sun, C.T.: Hygrothermal effects on the stress field of laminated composites. J. Reinf. Plast. Compos. 8, 40–54 (1989)

    Article  ADS  Google Scholar 

  11. Bouadi, H., Sun, C.T.: Hygrothermal effects on structural stiffness and structural damping of laminated composites. J. Mater. Sci. 25, 499–505 (1990)

    Article  ADS  Google Scholar 

  12. Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. III. Academic Press, New York (1976)

    Google Scholar 

  13. Buonsanti, M., Leonard, G., Scoppelliti, F.: Equilibrium state of a binary granular solids mixture. Appl. Mech. Mater. 52, 389–392 (2011)

    Article  ADS  Google Scholar 

  14. Cai, L.W., Weitsman, Y.J.: Non-Fickian moisture diffusion in polymeric composites. J. Compos. Mater. 28, 130–154 (1994)

    Article  ADS  Google Scholar 

  15. Černy, R., Rovnaníková, P.: Transport Processes in Concrete. CRC Press, New York (2002)

    Google Scholar 

  16. Cho, D.W., Kim, K.: The mechanisms of moisture damage in asphalt pavement by applying chemistry aspects. KSCE J. Civ. Eng. 14, 333–341 (2010)

    Article  Google Scholar 

  17. Coleman, B.D., Dill, E.H.: On thermodynamics and the stability of motions of materials with memory. Arch. Ration. Mech. Anal. 51, 1–53 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. COMSOL Multiphysics User’s Guide, Version 5.0-1. COMSOL, Inc., Burlington. www.comsol.com (2014)

  19. Coussy, O.: Poromechanics. John Wiley & Sons Inc, New York (2004)

    MATH  Google Scholar 

  20. Criscione, J.C., Humphrey, J.D., Douglas, A.S., Hunter, W.C.: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids 48, 2445–2465 (2000)

    Article  ADS  MATH  Google Scholar 

  21. Darbha, S., Rajagopal, K.R.: Unsteady motions of degrading or aging linearized elastic solids. Int. J. Non Linear Mech. 44, 478–485 (2009)

    Article  ADS  Google Scholar 

  22. Dym, C.L.: Stability Theory and Its Applications to Structural Mechanics. Dover Publications, New York (2002)

    Google Scholar 

  23. Ericksen, J.L.: Thermoelastic stability. In: Proceedings of the 5th US National Congress of Applied Mechanics, pp. 187–193 (1966)

  24. Farrar, C.R., Worden, K.: Structural Health Monitoring: A Machine Learning Perspective. Wiley, West Sussex (2013)

    Google Scholar 

  25. Gawin, D., Pesavento, F., Schrefler, B.A.: Modeling deterioration of cementitious materials exposed to calcium leaching in non-isothermal conditions. Comput. Methods Appl. Mech. Eng. 198, 3051–3083 (2009)

    Article  ADS  MATH  Google Scholar 

  26. Glasser, F.P., Marchand, J., Samson, E.: Durability of concrete degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 38, 226–246 (2008)

    Article  Google Scholar 

  27. Grasberger, S., Meschke, G.: Thermo-hygro-mechanical degradation of concrete: from coupled 3D material modeling to durability-oriented multifield structural analyses. Mater. Struct. 37, 244–256 (2004)

    Article  Google Scholar 

  28. Gros, X.E.: NDT Data Fusion. Wiley, London (1997)

    Google Scholar 

  29. Gu, J.D., Ford, T.E., Berke, N.S., Mitchell, R.: Biodeterioration of concrete by the fungus Fusarium. Int. Biodeterior. Biodegrad. 41, 101–109 (1998)

    Article  Google Scholar 

  30. Gurtin, M.E.: Thermodynamics and stability. Arch. Ration. Mech. Anal. 59, 53–96 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hale, J.K., Kocak, H.: Dynamics and Bifurcations. Springer, New York (1991)

    Book  MATH  Google Scholar 

  32. Harper, C.A.: Handbook of Plastics, Elastomers, & Composites, 4th edn. McGraw-Hill, New York (2002)

    Google Scholar 

  33. Heath, M.T.: Scientific Computing—An Introductory Survey, 2nd edn. McGraw-Hill, New York (2005)

    MATH  Google Scholar 

  34. Herrmann, A.W.: ASCE 2013 Report Card for America’s Infrastructure. In: IABSE Symposium Report, vol. 99, pp. 9–10. International Association for Bridge and Structural Engineering (2013)

  35. Holzapfel, G.A.: Nonlinear Solid Mechanics. Wiley, Chichester (2000)

    MATH  Google Scholar 

  36. Jarkova, E., Pleiner, H., Müller, H.W., Fink, A., Brand, H.R.: Hydrodynamics of nematic ferrofluids. Eur. Phys. J. E 5, 583–588 (2001)

    Article  Google Scholar 

  37. Jung, Y.G., Peterson, I.M., Kim, D.K., Lawn, B.R.: Lifetime-limiting strength degradation from contact fatigue in dental ceramics. J. Dent. Res. 79, 722–731 (2000)

    Article  Google Scholar 

  38. Kachanov, L.: Introduction to Continuum Damage Mechanics. Springer, Dordrecht (1986)

    Book  MATH  Google Scholar 

  39. Kaplan, M.F.: Concrete Radiation Shielding: Nuclear Physics, Concrete Properties, Design and Construction. Wiley, New York (1989)

    Google Scholar 

  40. Karra, S., Rajagopal, K.R.: Degradation and healing in a generalized neo-Hookean solid due to infusion of a fluid. Mech. Time-Depend. Mater. 16, 85–104 (2012)

    Article  ADS  Google Scholar 

  41. Klepach, D., Zohdi, T.I.: Strain assisted diffusion: modeling and simulation of deformation-dependent diffusion in composite media. Compos. Part B Eng. 56, 413–423 (2014)

    Article  Google Scholar 

  42. Kolberg, R., Wineman, A.: Response of beams of non-linear viscoelastic materials exhibiting strain-dependent stress relaxation. Int. J. Non Linear Mech. 32, 863–883 (1997)

    Article  MATH  Google Scholar 

  43. Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258 (1991)

    Article  Google Scholar 

  44. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer, Berlin (2005)

    Google Scholar 

  45. Li, V.C.: On engineered cementitious composites (ECC). J. Adv. Concr. Technol. 1, 215–230 (2006)

    Article  Google Scholar 

  46. Lurie, A.I.: Nonlinear Theory of Elasticity, North Holland Series in Applied Mathematics and Mechanics. Elsevier Science, Amsterdam (1990)

    Google Scholar 

  47. MATLAB: The MathWorks Inc. Natick, Massachusetts (2012)

  48. Maugin, G.A.: The Thermomechanics of Nonlinear Irreversible Behaviours: An Introduction. World Scientific Publishing Company, New Jersey (1998)

    Google Scholar 

  49. McAfee, K.B.: Stress-enhanced diffusion in glass I. Glass under tension and compression. J. Chem. Phys. 28, 218–226 (1958a)

    Article  ADS  Google Scholar 

  50. McAfee, K.B.: Stress-enhanced diffusion in glass II. Glass under shear. J. Chem. Phys. 28, 226–229 (1958b)

    Article  ADS  Google Scholar 

  51. Morozovska, A.N., Eliseev, E.A., Tagantsev, A.K., Bravina, S.L., Chen, L.Q., Kalinin, S.V.: Thermodynamics of electromechanically coupled mixed ionic–electronic conductors: deformation potential, Vegard strains, and flexoelectric effect. Phys. Rev. B 83, 195313 (2011)

    Article  ADS  Google Scholar 

  52. Mudunuru, M.K., Nakshatrala, K.B.: A framework for coupled deformation–diffusion analysis with application to degradation/healing. Int. J. Numer. Methods Eng. 89, 1144–1170 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Muliana, A., Rajagopal, K.R., Subramanian, S.C.: Degradation of an elastic composite cylinder due to the diffusion of a fluid. J. Compos. Mater. 43, 1225–1249 (2009)

    Article  ADS  Google Scholar 

  54. Myers, E.R., Lai, W.M., Mow, V.C.: A continuum theory and an experiment for the ion-induced swelling behavior of articular cartilage. J. Biomech. Eng. 106, 151–158 (1984)

    Article  Google Scholar 

  55. Naus, D.J.: Primer on durability of nuclear power plant reinforced concrete structures—a review of pertinent factors. Technical report, Oak Ridge National Laboratory (ORNL), NUREG/CR–6927 (2007)

  56. Ogden, R.W.: Nonlinear Elastic Deformations. Dover Publications, New York (1997)

    MATH  Google Scholar 

  57. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405 (1931a)

    Article  ADS  MATH  Google Scholar 

  58. Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265 (1931b)

    Article  ADS  MATH  Google Scholar 

  59. Peng, S.T., Landel, R.F.: Induced anisotropy of thermal conductivity of polymer solids under large strains. J. Appl. Polym. Sci. 19, 49–68 (1975)

    Article  Google Scholar 

  60. Picard, R., Leis, R.: Some remarks on the horizontal line method. Math. Methods Appl. Sci. 2, 471–479 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Pierron, F., Grédiac, M.: The Virtual Fields Method: Extracting Constitutive Mechanical Parameters From Full-Field Deformation Measurements. Springer, New York (2009)

    Google Scholar 

  62. Plešek, J., Kruisová, A.: Formulation, validation and numerical procedures for Hencky’s elasticity model. Comput. Struct. 84, 1141–1150 (2006)

    Article  Google Scholar 

  63. Rajagopal, K.R., Srinivasa, A.R., Wineman, A.S.: On the shear and bending of a degrading polymer beam. Int. J. Plast. 23, 1618–1636 (2007)

    Article  MATH  Google Scholar 

  64. Rothe, E.: Zweidimensionale parabolische randwertaufgaben als grenzfall eindimensionaler randwertaufgaben. Math. Ann. 102, 650–670 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  65. Sadd, M.H.: Elasticity: Theory, Applications, and Numerics, 3rd edn. Academic Press, Oxford (2014)

    Google Scholar 

  66. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. Wiley, West Sussex (2004)

    MATH  Google Scholar 

  67. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley, West Sussex (2008)

    MATH  Google Scholar 

  68. Sih, G.C., Michopoulos, J.G., Chou, S.C.: Hygrothermoelasticity. Martinus Nijhoff Publishers, Dordrecht (1986)

    Book  Google Scholar 

  69. Springman, R.M., Bassani, J.L.: Mechano-chemical coupling in the adhesion of thin-shell structures. J. Mech. Phys. Solids 57, 909–931 (2009)

    Article  ADS  Google Scholar 

  70. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Cambridge (2001)

    MATH  Google Scholar 

  71. Sutton, M.A., Orteu, J.J., Schreier, H.W.: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory, and Applications. Springer, New York (2009)

    Google Scholar 

  72. Swamy, R.N.: The Alkali-Silica Reaction in Concrete. CRC Press, New York (2002)

    Google Scholar 

  73. Ulm, J.F., Coussy, O., Kefei, L., Larive, C.: Thermo-chemo-mechanics of ASR expansion in concrete structures. J. Eng. Mech. 126, 233–242 (2000)

    Article  Google Scholar 

  74. Venerus, D.C., Schieber, J.D., Balasubramanian, V., Bush, K., Smoukov, S.: Anisotropic thermal conduction in a polymer liquid subjected to shear flow. Phys. Rev. Lett. 93, 098301 (2004)

    Article  ADS  Google Scholar 

  75. Voyiadjis, G.Z., Kattan, P.I.: Damage Mechanics. CRC Press, Taylor & Francis Group, Boca Raton (2005)

    Book  MATH  Google Scholar 

  76. Wang, S., Li, V.C.: High-early-strength engineered cementitious composites. ACI Mater. J. 103, 97–105 (2006)

    Google Scholar 

  77. Weitsman, Y.J.: Coupled damage and moisture-transport in fiber-reinforced, polymeric composites. Int. J. Solids Struct. 23, 1003–1025 (1987)

    Article  MATH  Google Scholar 

  78. Weitsman, Y.J.: Anomalous fluid sorption in polymeric composites and its relation to fluid-induced damage. Compos. Part A Appl. Sci. Manuf. 37, 617–623 (2006)

    Article  Google Scholar 

  79. Weitsman, Y.J., Guo, Y.J.: A correlation between fluid-induced damage and anomalous fluid sorption in polymeric composites. Compos. Sci. Technol. 62, 889–908 (2002)

    Article  Google Scholar 

  80. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  81. Willam, K., Rhee, I., Xi, Y.: Thermal degradation of heterogeneous concrete materials. J. Mater. Civ. Eng. 17, 276–285 (2005)

    Article  Google Scholar 

  82. Zheng, R., Tanner, R.I., Fan, X.J.: Injection Molding: Integration of Theory and Modeling Methods. Springer, Berlin (2011)

    Book  Google Scholar 

  83. Ziegler, H.: An Introduction to Thermomechanics. North Holland Publishing Company, Amsterdam (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Nakshatrala.

Additional information

Communicated by Andreas Öchsner.

C. Xu and M.K. Mudunuru are graduate students at University of Houston.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Mudunuru, M.K. & Nakshatrala, K.B. Material degradation due to moisture and temperature. Part 1: mathematical model, analysis, and analytical solutions. Continuum Mech. Thermodyn. 28, 1847–1885 (2016). https://doi.org/10.1007/s00161-016-0511-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0511-4

Keywords

Navigation