Skip to main content
Log in

About lamination upper and convexification lower bounds on the free energy of monoclinic shape memory alloys in the context of T 3-configurations and R-phase formation

Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Cite this article

Abstract

This work is concerned with different estimates of the quasiconvexification of multi-well energy landscapes of NiTi shape memory alloys, which models the overall behavior of the material. Within the setting of the geometrically linear theory of elasticity, we consider a formula of the quasiconvexification which involves the so-called energy of mixing.We are interested in lower and upper bounds on the energy of mixing in order to get a better understanding of the quasiconvexification. The lower bound on the energy of mixing is obtained by convexification; it is also called Sachs or Reuß lower bound. The upper bound on the energy of mixing is based on second-order lamination. In particular, we are interested in the difference between the lower and upper bounds. Our numerical simulations show that the difference is in fact of the order of 1% and less in martensitic NiTi, even though both bounds on the energy of mixing were rather expected to differ more significantly. Hence, in various circumstances it may be justified to simply work with the convexification of the multi-well energy, which is relatively easy to deal with, or with the lamination upper bound, which always corresponds to a physically realistic microstructure, as an estimate of the quasiconvexification. In order to obtain a potentially large difference between upper and lower bound, we consider the bounds along paths in strain space which involve incompatible strains. In monoclinic shape memory alloys, three-tuples of pairwise incompatible strains play a special role since they form so-called T 3-configurations, originally discussed in a stress-free setting. In this work, we therefore consider in particular numerical simulations along paths in strain space which are related to these T 3-configurations. Interestingly, we observe that the second-order lamination upper bound along such paths is related to the geometry of the T 3-configurations. In addition to the purely martensitic regime, we also consider the influence of adding R-phase variants to the microstructure. Adding single variants of R-phase is shown to be energetically favorable in a compatible martensitic setting. However, the combination of several R-phase variants with compatible or incompatible martensite yields significant differences between the bounds considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Arghavani J., Auricchio F., Naghdabadi R., Reali A., Sohrabpour S.: A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. Int. J. Plast. 26, 976–991 (2010)

    Article  MATH  Google Scholar 

  2. Avellaneda M., Milton G.: Bounds on the effective elasticity tensor of composites based on two-point correlations. In: Hui, D., Koszic, T. (eds.) Proceedings of the ASME Energy-Technology Conference and Exposition, ASME, New York (1989)

    Google Scholar 

  3. Ball J.M., James R.D.: Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100, 13–52 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ball J.M., James R.D.: Proposed experimental tests of a theory of fine microstructure, and the two-well problem. Phil. Trans. R. Soc. Lond. A 338, 389–450 (1992)

    Article  ADS  MATH  Google Scholar 

  5. Bartel T., Hackl K.: A novel approach to the modelling of single-crystalline materials undergoing martensitic phase-transformations. Mater. Sci. Eng. A 481, 371–375 (2008)

    Article  Google Scholar 

  6. Bartel T., Menzel A., Svendsen B.: Thermodynamic and relaxation-based modeling of the interaction between martensitic phase transformations and plasticity. J. Mech. Phys. Solids 59, 1004–1019 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bhattacharya K.: Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Cont. Mech. Thermodyn. 5, 205–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhattacharya K.: Microstructure of Martensite—Why It Forms and How It Gives Rise to the Shape-Memory Effect. Oxford University Press, New York (2003)

    MATH  Google Scholar 

  9. Bhattacharya K., Schlömerkemper A.: Stress-induced phase transformations in shape-memory polycrystals. Arch. Rat. Mech. Anal. 196, 715–751 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruno O.P., Reitich F., Leo P.H.: The overall elastic energy of polycrystalline martensitic solids. J. Mech. Phys. Solids 44, 1051–1101 (1996)

    Article  ADS  Google Scholar 

  11. Chenchiah I.V., Schlömerkemper A.: Non-laminate microstructures in monoclinic-I martensite. Arch. Rat. Mech. Anal. 207, 39–74 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dacorogna B.: Direct Methods in the Calculus of Variations. 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  13. Govindjee S., Hackl K., Heinen R.: An upper bound to the free energy of mixing by twin-compatible lamination for n-variant martensitic phase transformations. Cont. Mech. Thermodyn. 18, 443–453 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Govindjee S., Miehe C.: A multi-variant martensitic phase transformation model: formulation and numerical implementation. Comput. Methods Appl. Mech. Eng. 191, 215–238 (2001)

    Article  ADS  MATH  Google Scholar 

  15. Govindjee S., Mielke A., Hall G.J.: The free energy of mixing for n-variant martensitic phase transformations using quasi-convex analysis. J. Mech. Phys. Solids 51, 763+ (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Hackl K., Heinen R.: A micromechanical model for pretextured polycrystalline shape-memory alloys including elastic anisotropy. Cont. Mech. Thermodyn. 19, 499–510 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hackl K., Heinen R.: An upper bound to the free energy of n-variant polycrystalline shape memory alloys. J. Mech. Phys. Solids 56, 2832–2843 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Hara T., Ohba T., Okunishi E., Otsuka K.: Structural study of R-phase in Ti—50.23 at% Ni and Ti—47.75 at% Ni—1.50 at% Fe alloys. Mater. Trans. 38, 11–17 (1997)

    Article  Google Scholar 

  19. Hall G.J., Govindjee S.: Application of a partially relaxed shape memory free energy function to estimate the phase diagram and predict global microstructure evolution. J. Mech. Phys. Solids 50, 501–530 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Hane K.F., Shield T.W.: Microstructure in the cubic to monoclinic transition in titanium–nickel shape memory alloys. Acta Mater. 47, 2603–2617 (1999)

    Article  Google Scholar 

  21. Heinen R., Hackl K.: On the calculation of energy-minimizing phase fractions in shape memory alloys. Comput. Methods Appl. Mech. Eng. 196, 2401–2412 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Helm D., Haupt P.: Shape memory behaviour: modelling within continuum thermomechanics. Int. J. Solids Struct. 40, 827–849 (2003)

    Article  MATH  Google Scholar 

  23. Junker P.: A novel approach to representative orientation distribution functions for modeling and simulation of polycrystalline shape memory alloys. Int. J. Numer. Meth. Eng. 98, 799–818 (2014)

    Article  MathSciNet  Google Scholar 

  24. Knowles K.M., Smith D.A.: The crystallography of the martensitic transformation in equiatomic nickel–titanium. Acta Metal. Mater. 29, 101–110 (1981)

    Article  Google Scholar 

  25. Kochmann D., Hackl K.: The evolution of laminates in finite crystal plasticity: a variational approach. Cont. Mech. Thermodyn. 23, 63–85 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kohn R.: The relaxation of a double-well problem. Cont. Mech. Thermodyn. 3, 193–236 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lexcellent C., Boubakar M.L., Bouvet C., Calloch S.: About modelling the shape memory alloy behaviour based on the phase transformation surface identification under proportional loading and anisothermal conditions. Int. J. Solids Struct. 43, 613–626 (2006)

    Article  MATH  Google Scholar 

  28. Lexcellent C., Schlömerkemper A.: Comparison of several models for the determination of the phase transformation yield surface in shape-memory alloys with experimental data. Acta Mater. 55, 2995–3006 (2007)

    Article  Google Scholar 

  29. Mielke A.: Estimates on the mixture function for multiphase problems in elasticity. In: Sändig, A.M., Schiehlen, W., Wendland, W.L. Multifield Problems (State of the Art), pp. 96–103. Springer, Berlin (2000)

    Chapter  Google Scholar 

  30. Mielke A., Roubíček T.: Rate-Independent Systems: Theory and Application. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  31. Müller, S.: Variational models for microstructure and phase transitions. In: Bethuel, F., Huisken, G., Müller, S., Steffen, K. (Eds.) Calculus of Variations and Geometric Evolution Problems: Lectures Given at the 2nd Session of the Centro Internazionale Matematico Estivo (CIME) Held in Cetraro, Italy, June 15–22, 1996, pp. 85–210. Springer, Berlin (1999)

  32. Müller Ch., Bruhns O.T.: A thermodynamic finite-strain model for pseudoelastic shape memory alloys. Int. J. Plast. 22, 1658–1682 (2006)

    Article  MATH  Google Scholar 

  33. Mercatoris B.C.N., Massart T.J.: A coupled two-scale computational scheme for the failure of periodic quasi-brittle thin planar shells and its application to masonry. Int. J. Numer. Meth. Eng. 85, 1177–1206 (2011)

    Article  MATH  Google Scholar 

  34. Otsuka K., Ren X.: Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005)

    Article  Google Scholar 

  35. Otsuka K., Sawamura T., Shimizu K.: Crystal structure and internal defects of equiatomic TiNi martensite. Phys. Status Solidi (A) 5, 457–470 (1971)

    Article  ADS  Google Scholar 

  36. Peigney M.: A non-convex lower bound on the effective energy of polycrystalline shape memory alloys. J. Mech. Phys. Solids 57, 970–986 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  37. Peigney M.: On the energy-minimizing strains in martensitic microstructures—part 1: geometrically nonlinear theory. J. Mech. Phys. Solids 61, 1489–1510 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Peigney M.: On the energy-minimizing strains in martensitic microstructures—part 2: geometrically linear theory. J. Mech. Phys. Solids 61, 1511–1530 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Pijaudiercabot G., Benallal A.: Strain localization and bifurcation in a nonlocal continuum. I. J. Solids Struct. 30, 1761–1775 (1993)

    Article  MATH  Google Scholar 

  40. Sagar G., Stein E.: Contributions on the theory and computation of mono- and poly-crystalline cyclic martensitic phase transformations. Z. Angew. Math. Mech. 90, 655–681 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Saleeb A.F., Padula S.A., Kumar A.: A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions. Int. J. Plast. 27, 655–687 (2011)

    Article  MATH  Google Scholar 

  42. Schlömerkemper A., Chenchiah I.V., Fechte-Heinen R., Wachsmuth D.: Upper and lower bounds on the set of recoverable strains and on effective energies in cubic-to-monoclinic martensitic phase transformations. MATEC Web Conf. 33, 02011 (2015)

    Article  Google Scholar 

  43. Sedlák P., Frost M., Benešová B., Ben Zineb T., Seiner H.: Šittner, thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings. Int. J. Plast. 39, 132–151 (2012)

    Article  Google Scholar 

  44. Shaw J.A., Kyriakides S.: Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 43, 1243–1281 (1995)

    Article  ADS  Google Scholar 

  45. Smyshlyaev V., Willis J.: A ‘non-local’ variational approach to the elastic energy minimization of martensitic polycrystals. Proc. R. Soc. Lond. A 454, 1573–1613 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Smyshlyaev V., Willis J.: On the relaxation of a three-well energy. Proc. R. Soc. Lond. A 455, 779–814 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tartar L.: H-measures, a new approach for studying homogenization, oscillation and concentration effects in partial differential equations. Proc. R. Soc. Edinb. A 115, 193–230 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wagner M.F.-X., Windl W.: Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles. Acta Mater. 56, 6232–6245 (2008)

    Article  Google Scholar 

  49. Yawny A., Sade M., Eggeler G.: Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires. Z. Metallkunde 96, 608618 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Fechte-Heinen.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fechte-Heinen, R., Schlömerkemper, A. About lamination upper and convexification lower bounds on the free energy of monoclinic shape memory alloys in the context of T 3-configurations and R-phase formation. Continuum Mech. Thermodyn. 28, 1601–1621 (2016). https://doi.org/10.1007/s00161-016-0494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0494-1

Keywords

Navigation