Continuum Mechanics and Thermodynamics

, Volume 28, Issue 1–2, pp 407–422 | Cite as

Mathematical study of boundary-value problems within the framework of Steigmann–Ogden model of surface elasticity

Original Article

Abstract

Mathematical questions pertaining to linear problems of equilibrium dynamics and vibrations of elastic bodies with surface stresses are studied. We extend our earlier results on existence of weak solutions within the Gurtin–Murdoch model to the Steigmann–Ogden model of surface elasticity using techniques from the theory of Sobolev’s spaces and methods of functional analysis. The Steigmann–Ogden model accounts for the bending stiffness of the surface film; it is a generalization of the Gurtin–Murdoch model. Weak setups of the problems, based on variational principles formulated, are employed. Some uniqueness-existence theorems for weak solutions of static and dynamic problems are proved in energy spaces via functional analytic methods. On the boundary surface, solutions to the problems under consideration are smoother than those for the corresponding problems of classical linear elasticity and those described by the Gurtin–Murdoch model. The weak setups of eigenvalue problems for elastic bodies with surface stresses are based on the Rayleigh and Courant variational principles. For the problems based on the Steigmann–Ogden model, certain spectral properties are established. In particular, bounds are placed on the eigenfrequencies of an elastic body with surface stresses; these demonstrate the increase in the body rigidity and the eigenfrequencies compared with the situation where the surface stresses are neglected.

Keywords

Surface stresses Steigmann–Ogden model Weak solutions Existence of solutions Eigenfrequency analysis Nanomechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams R.A., Fournier J.J.F.: Sobolev Spaces, Pure and Applied Mathematics, vol. 140, 2nd edn. Academic Press, Amsterdam (2003)Google Scholar
  2. 2.
    Altenbach H., Eremeyev V.A., Lebedev L.P.: On the existence of solution in the linear elasticity with surface stresses. ZAMM 90(3), 231–240 (2010)MathSciNetCrossRefADSMATHGoogle Scholar
  3. 3.
    Altenbach H., Eremeyev V.A., Lebedev L.P.: On the spectrum and stiffness of an elastic body with surface stresses. ZAMM 91(9), 699–710 (2011)MathSciNetCrossRefADSMATHGoogle Scholar
  4. 4.
    Askes H., Aifantis E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)CrossRefGoogle Scholar
  5. 5.
    Ciarlet, P.G.: Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity. Elsevier, Amsterdam (1998)Google Scholar
  6. 6.
    Ciarlet, P.G.: Mathematical Elasticity. Vol. III: Theory of Shells. Elsevier, Amsterdam (2000)Google Scholar
  7. 7.
    Courant R., Hilbert D.: Methods of Mathematical Physics Vol. I. Wiley, Singapore (1989)CrossRefMATHGoogle Scholar
  8. 8.
    Cuenot S., Frétigny C., Demoustier-Champagne S., Nysten B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B. 69(16), 165–410 (2004)CrossRefGoogle Scholar
  9. 9.
    dell’Isola F., Sciarra G., Vidoli S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. London A.: Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009)MathSciNetCrossRefADSMATHGoogle Scholar
  10. 10.
    dell’Isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32(1), 33–52 (1997)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la d’Alembert”. ZAMP 63, 1119–1141 (2012)MathSciNetADSMATHGoogle Scholar
  12. 12.
    Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Advances in Applied Mechanics, vol. 42, pp. 1–68. Elsevier (2008)Google Scholar
  13. 13.
    Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mechanica in print (2015)Google Scholar
  14. 14.
    Eremeyev V.A., Lebedev L.P.: Existence of weak solutions in elasticity. Math. Mech. Solids 18(2), 204–217 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fichera G.: Existence theorems in elasticity. In: Flügge, S. (ed.) Handbuch der Physik. vol. VIa/2, pp. 347–389. Springer, Berlin (1972)Google Scholar
  16. 16.
    Gennes P.G.: Some effects of long range forces on interfacial phenomena. J. Phys. Lett. 42(16), 377–379 (1981)CrossRefGoogle Scholar
  17. 17.
    Gurtin M.E., Murdoch A.I.: Addenda to our paper A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 59(4), 389–390 (1975)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Javili A., McBride A., Steinmann P.: Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl. Mech. Rev. 65, 010,802–1-31 (2012)Google Scholar
  20. 20.
    Javili A., McBride A., Steinmann P., Reddy B.: Relationships between the admissible range of surface material parameters and stability of linearly elastic bodies. Philos. Mag. 92(28–30), 3540–3563 (2012)CrossRefADSGoogle Scholar
  21. 21.
    Jing G.Y., Duan H.L., Sun X.M., Zhang Z.S., Xu J., Wang Y.D.L.J.X., Yu D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B. 73(23), 235–409–6 (2006)CrossRefGoogle Scholar
  22. 22.
    Kim C.I., Schiavone P., Ru C.Q.: Effect of surface elasticity on an interface crack in plane deformations. Proc. R. Soc. A. 467(2136), 3530–3549 (2011)MathSciNetCrossRefADSMATHGoogle Scholar
  23. 23.
    Kim C.I., Schiavone P., Ru C.Q.: A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math. Mech. Solids 18(1), 59–66 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Laplace P.S., Fournier J.J.F.: Sur l’action capillaire. Supplément à la théorie de l’action capillaire. In: Traité de mécanique céleste, vol. 4. Supplement 1, Livre X, pp. 771–777. Gauthier–Villars et fils, Paris (1805)Google Scholar
  25. 25.
    Laplace P.S.: À la théorie de l’action capillaire. Supplément à la théorie de l’action capillaire. In: Traité de mécanique céleste, vol. 4. Supplement 2, Livre X, pp. 909–945. Gauthier–Villars et fils, Paris (1806)Google Scholar
  26. 26.
    Lebedev L.P., Vorovich I.I.: Functional Analysis in Mechanics. Springer, New York (2003)CrossRefMATHGoogle Scholar
  27. 27.
    Miller R.E., Shenoy V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139 (2000)CrossRefADSGoogle Scholar
  28. 28.
    Mindlin R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)CrossRefGoogle Scholar
  29. 29.
    Mishuris G.S.: Interface crack and nonideal interface concept (Mode III). Int. J. Fract. 107(3), 279–296 (2001)CrossRefGoogle Scholar
  30. 30.
    Mishuris, G.S.: Mode III interface crack lying at thin nonhomogeneous anisotropic interface. Asymptotics near the crack tip. In: Movchan A.B. (ed.) IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics, Solid Mechanics and Its Applications, vol. 113, pp. 251–260. Springer (2004)Google Scholar
  31. 31.
    Mishuris G.S., Kuhn G.: Asymptotic behaviour of the elastic solution near the tip of a crack situated at a nonideal interface. ZAMM 81(12), 811–826 (2001)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Poisson S.D.: Nouvelle théorie de l’action capillaire. Bachelier Père et Fils, Paris (1831)Google Scholar
  33. 33.
    Schiavone P., Ru C.Q.: Integral equation methods in plane-strain elasticity with boundary reinforcement. Proc. R. Soc. London. Ser. A: Math. Phys. Eng. Sci. 454(1976), 2223–2242 (1998)MathSciNetCrossRefADSMATHGoogle Scholar
  34. 34.
    Schiavone P., Ru C.Q.: Solvability of boundary value problems in a theory of plane-strain elasticity with boundary reinforcement. Int. J. Eng. Sci. 47(11), 1331–1338 (2009)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Seppecher, P.: Les fluides de Cahn-Hilliard. Mémoire d’habilitation à diriger des recherches, Université du Sud Toulon (1996)Google Scholar
  36. 36.
    Shenoy V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B. 71(9), 094,104 (2005)CrossRefGoogle Scholar
  37. 37.
    Sigaeva, T., Schiavone, P.: The effect of surface stress on an interface crack in linearly elastic materials. Math. Mech. Solids. (2014). doi:10.1177/1081286514534871
  38. 38.
    Sigaeva T., Schiavone P.: Solvability of a theory of anti-plane shear with partially coated boundaries. Arch. Mech. 66(2), 113–125 (2014)MathSciNetMATHGoogle Scholar
  39. 39.
    Steigmann D.J., Ogden R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A. 453(1959), 853–877 (1997)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Steigmann D.J., Ogden R.W.: Elastic surface–substrate interactions. Proc. R. Soc. A. 455(1982), 437–474 (1999)MathSciNetCrossRefADSMATHGoogle Scholar
  41. 41.
    Wang J., Duan H.L., Huang Z.P., Karihaloo B.L.: A scaling law for properties of nano-structured materials. Proc. R. Soc. A. 462(2069), 1355–1363 (2006)CrossRefADSMATHGoogle Scholar
  42. 42.
    Wang J., Huang Z., Duan H., Yu S., Feng X., Wang G., Zhang W., Wang T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–82 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Mechanics, Faculty of Mechanical EngineeringOtto von Guericke-UniversityMagdeburgGermany
  2. 2.South Scientific Center of RASci & South Federal UniversityRostov on DonRussia
  3. 3.Departamento de MatemáticasUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations