Skip to main content
Log in

A model of layered prismatic shells

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The present paper is devoted to a model for elastic layered prismatic shells which is constructed by means of a suggested in the paper approach which essentially differs from the known approaches for constructing models of laminated structures. Using Vekua’s dimension reduction method after appropriate modifications, hierarchical models for elastic layered prismatic shells are constructed. We get coupled governing systems for the whole structure in the projection of the structure. The advantage of this model consists in the fact that we solve boundary value problems separately for each ply. In addition, beginning with the second ply, we use a solution of a boundary value problem of the preceding ply. We indicate ways of investigating boundary value problems for the governing systems. For the sake of simplicity, we consider the case of two plies, in the zeroth approximation. However, we also make remarks concerning the cases when either the number of plies is more than two or higher-order approximations (hierarchical models) should be applied. As an example, we consider a special case of deformation and solve the corresponding boundary value problem in the explicit form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy J.N.: Mechanics of Laminated Composite Plates and Shells. Theory and Analysis. CRC Press, New York (2004)

    MATH  Google Scholar 

  2. Jones R.M.: Mechanics of Composite Materials, Second Edition. Taylor & Francis, London (1999)

    Google Scholar 

  3. Altenbach H., Altenbach J., Kissing W.: Mechanics of Composite Structural Elements. Springer, Berlin (2004)

    Book  Google Scholar 

  4. Carrera E., Brischetto S.: Analysis of thickness locking in classical, refined and mixed multilayered plate theories. Compos. Struct. 82(4), 549–562 (2008)

    Article  Google Scholar 

  5. Altenbach J., Kissing W., Altenbach H.: Dünwandige Stab- und Stabschalentragwerke. Vieweg-Verlag, Braunschweig/Wiesbaden (1994)

    Book  Google Scholar 

  6. Reddy J.N.: A simple higher-order theories for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)

    Article  ADS  MATH  Google Scholar 

  7. Reddy J.N., Phan N.D.: Stability and vibration of isotropic, orthotropic and laminated plates according to a higher order shear deformation theory. J. Sound Vib. 98(2), 157–170 (1985)

    Article  ADS  MATH  Google Scholar 

  8. Lo K.H., Christensen R.M., Wu E.M.: A higher-order theory of plate deformation. Part 2: laminated plates. J. Appl. Mech. 44(4), 669–676 (1977)

    Article  ADS  MATH  Google Scholar 

  9. Librescu L., Schmidt R.: Refined theories of elastic anisotropic shells accounting for small strains and moderate rotations. Int. J. Non-linear Mech. 23(3), 217–229 (1988)

    Article  MATH  Google Scholar 

  10. Carrera E., Brischetto S.: A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates. Appl. Mech. Rev. 62(1), 1–17 (2009)

    Article  Google Scholar 

  11. Carrera, E., Brischetto, E.: A comparison of various kinematic models for sandwich shell panels with soft core. J. Compos. Mater. 43(20), 2201–2221 (2009, in press)

  12. Carrera E., Giunta G., Petrolo M.: Beam Structures: Classical and Advanced Theories. Wiley, New York (2011)

    Book  MATH  Google Scholar 

  13. Carrera E.: A class of two-dimensional theories for anisotropic multilayered plates analysis. Accademia delle Scienze di Torino, Memorie Scienze Fisiche 19–20, 1–39 (1995)

    MathSciNet  Google Scholar 

  14. Carrera E.: Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking. Arch. Comput. Methods Eng. 10(3), 215–296 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Robbins,D.H. JR.,Reddy, J.N.:Modeling of thick composites using a layer-wise theory. Int. J. Numer. MethodsEng. 36, 655–677 (1993)

  16. Carrera E.: \({C^0_z}\) requirements—models for the two dimensional analysis of multilayered structures. Compos. Struct. 37(3–4), 373–383 (1997)

    Article  Google Scholar 

  17. Demasi L.: Hierarchy plate theories for thick and thin composite plates: the generalized unified formulation. Compos. Struct. 84(3), 256–270 (2008)

    Article  Google Scholar 

  18. Dauge, M., Faou, E., Yosibash, Z.: Plates and shells: asymptotic expansions and hierarchical models. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Chapter 8, vol. I of the Encyclopedia of Computational Mechanics. Wiley, pp. 199–236 (2004)

  19. Jaiani G., Kharibegashvili S., Natroshvili D., Wendland W.L.: Two-dimensional hierarchical models for prismatic shells with thickness vanishing at the boundary. J. Elast. 77(2), 95–122 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jaiani, G.: Differential hierarchical models for elastic prismatic shells with microtemperatures. ZAMM-Z. Angew. Math. Mech. 95(1) (2015), 77–90. doi:10.1002/zamm.201300016

  21. Grot A.R.: Thermodynamics of a continuum with microstructure. Int. J. Eng. Sci. 7, 801–814 (1969)

    Article  MATH  Google Scholar 

  22. Vekua I.N.: On one method of calculating of prismatic shells. (Russian). Trudy Tbilis. Mat. Inst. 21, 191–259 (1955)

    MathSciNet  Google Scholar 

  23. Vekua I.N.: Shell Theory: General Methods of Construction. Pitman Advanced Publishing Program, Boston (1985)

    MATH  Google Scholar 

  24. Jaiani G.: Cusped Shell-like Structures. Springer Briefs. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  25. Jaiani G.: Hierarchical models for prismatic shells with mixed conditions on face surfaces. Bull. TICMI 17(2), 24–48 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Gordeziani D.: To the exactness of one variant of the theory of thin shells (Russian). Dokl. Acad. Nauk. SSSR 216(4), 751–754 (1974)

    MathSciNet  Google Scholar 

  27. Avalishvili M., Gordeziani D.: Investigation of two-dimensional models of elastic prismatic shells. Georgian Math. J. 10(1), 17–36 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Chinchaladze N., Gilbert R., Jaiani G., Kharibegashvili S., Natroshvili D.: Existence and uniqueness theorems for cusped prismatic shells in the N-th hierarchical model. Math. Methods Appl. Sci. 31(11), 1345–1367 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Jaiani G.: On a model of layered prismatic shells. Proc. I. Vekua Inst. Appl. Math. 63, 13–24 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Chinchaladze N.: Harmonic vibration of cusped plates in the N-th approximation of Vekua’s hierarchical models. Arch. Mech. 65(5), 345–365 (2013)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Jaiani.

Additional information

Communicated by Andreas Öchsner.

The paper was supported by the Shota Rustaveli National Science Foundation (SRNSF) Grant # 30/28.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiani, G. A model of layered prismatic shells. Continuum Mech. Thermodyn. 28, 765–784 (2016). https://doi.org/10.1007/s00161-015-0414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0414-9

Keywords

Navigation