Continuum Mechanics and Thermodynamics

, Volume 28, Issue 3, pp 765–784 | Cite as

A model of layered prismatic shells

  • George Jaiani
Original Article


The present paper is devoted to a model for elastic layered prismatic shells which is constructed by means of a suggested in the paper approach which essentially differs from the known approaches for constructing models of laminated structures. Using Vekua’s dimension reduction method after appropriate modifications, hierarchical models for elastic layered prismatic shells are constructed. We get coupled governing systems for the whole structure in the projection of the structure. The advantage of this model consists in the fact that we solve boundary value problems separately for each ply. In addition, beginning with the second ply, we use a solution of a boundary value problem of the preceding ply. We indicate ways of investigating boundary value problems for the governing systems. For the sake of simplicity, we consider the case of two plies, in the zeroth approximation. However, we also make remarks concerning the cases when either the number of plies is more than two or higher-order approximations (hierarchical models) should be applied. As an example, we consider a special case of deformation and solve the corresponding boundary value problem in the explicit form.


Layered shells Cusped layered shells Microtemperatures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reddy J.N.: Mechanics of Laminated Composite Plates and Shells. Theory and Analysis. CRC Press, New York (2004)zbMATHGoogle Scholar
  2. 2.
    Jones R.M.: Mechanics of Composite Materials, Second Edition. Taylor & Francis, London (1999)Google Scholar
  3. 3.
    Altenbach H., Altenbach J., Kissing W.: Mechanics of Composite Structural Elements. Springer, Berlin (2004)CrossRefGoogle Scholar
  4. 4.
    Carrera E., Brischetto S.: Analysis of thickness locking in classical, refined and mixed multilayered plate theories. Compos. Struct. 82(4), 549–562 (2008)CrossRefGoogle Scholar
  5. 5.
    Altenbach J., Kissing W., Altenbach H.: Dünwandige Stab- und Stabschalentragwerke. Vieweg-Verlag, Braunschweig/Wiesbaden (1994)CrossRefGoogle Scholar
  6. 6.
    Reddy J.N.: A simple higher-order theories for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Reddy J.N., Phan N.D.: Stability and vibration of isotropic, orthotropic and laminated plates according to a higher order shear deformation theory. J. Sound Vib. 98(2), 157–170 (1985)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Lo K.H., Christensen R.M., Wu E.M.: A higher-order theory of plate deformation. Part 2: laminated plates. J. Appl. Mech. 44(4), 669–676 (1977)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Librescu L., Schmidt R.: Refined theories of elastic anisotropic shells accounting for small strains and moderate rotations. Int. J. Non-linear Mech. 23(3), 217–229 (1988)CrossRefzbMATHGoogle Scholar
  10. 10.
    Carrera E., Brischetto S.: A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates. Appl. Mech. Rev. 62(1), 1–17 (2009)CrossRefGoogle Scholar
  11. 11.
    Carrera, E., Brischetto, E.: A comparison of various kinematic models for sandwich shell panels with soft core. J. Compos. Mater. 43(20), 2201–2221 (2009, in press)Google Scholar
  12. 12.
    Carrera E., Giunta G., Petrolo M.: Beam Structures: Classical and Advanced Theories. Wiley, New York (2011)CrossRefzbMATHGoogle Scholar
  13. 13.
    Carrera E.: A class of two-dimensional theories for anisotropic multilayered plates analysis. Accademia delle Scienze di Torino, Memorie Scienze Fisiche 19–20, 1–39 (1995)MathSciNetGoogle Scholar
  14. 14.
    Carrera E.: Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking. Arch. Comput. Methods Eng. 10(3), 215–296 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Robbins,D.H. JR.,Reddy, J.N.:Modeling of thick composites using a layer-wise theory. Int. J. Numer. MethodsEng. 36, 655–677 (1993)Google Scholar
  16. 16.
    Carrera E.: \({C^0_z}\) requirements—models for the two dimensional analysis of multilayered structures. Compos. Struct. 37(3–4), 373–383 (1997)CrossRefGoogle Scholar
  17. 17.
    Demasi L.: Hierarchy plate theories for thick and thin composite plates: the generalized unified formulation. Compos. Struct. 84(3), 256–270 (2008)CrossRefGoogle Scholar
  18. 18.
    Dauge, M., Faou, E., Yosibash, Z.: Plates and shells: asymptotic expansions and hierarchical models. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Chapter 8, vol. I of the Encyclopedia of Computational Mechanics. Wiley, pp. 199–236 (2004)Google Scholar
  19. 19.
    Jaiani G., Kharibegashvili S., Natroshvili D., Wendland W.L.: Two-dimensional hierarchical models for prismatic shells with thickness vanishing at the boundary. J. Elast. 77(2), 95–122 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jaiani, G.: Differential hierarchical models for elastic prismatic shells with microtemperatures. ZAMM-Z. Angew. Math. Mech. 95(1) (2015), 77–90. doi: 10.1002/zamm.201300016
  21. 21.
    Grot A.R.: Thermodynamics of a continuum with microstructure. Int. J. Eng. Sci. 7, 801–814 (1969)CrossRefzbMATHGoogle Scholar
  22. 22.
    Vekua I.N.: On one method of calculating of prismatic shells. (Russian). Trudy Tbilis. Mat. Inst. 21, 191–259 (1955)MathSciNetGoogle Scholar
  23. 23.
    Vekua I.N.: Shell Theory: General Methods of Construction. Pitman Advanced Publishing Program, Boston (1985)zbMATHGoogle Scholar
  24. 24.
    Jaiani G.: Cusped Shell-like Structures. Springer Briefs. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  25. 25.
    Jaiani G.: Hierarchical models for prismatic shells with mixed conditions on face surfaces. Bull. TICMI 17(2), 24–48 (2013)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Gordeziani D.: To the exactness of one variant of the theory of thin shells (Russian). Dokl. Acad. Nauk. SSSR 216(4), 751–754 (1974)MathSciNetGoogle Scholar
  27. 27.
    Avalishvili M., Gordeziani D.: Investigation of two-dimensional models of elastic prismatic shells. Georgian Math. J. 10(1), 17–36 (2003)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Chinchaladze N., Gilbert R., Jaiani G., Kharibegashvili S., Natroshvili D.: Existence and uniqueness theorems for cusped prismatic shells in the N-th hierarchical model. Math. Methods Appl. Sci. 31(11), 1345–1367 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Jaiani G.: On a model of layered prismatic shells. Proc. I. Vekua Inst. Appl. Math. 63, 13–24 (2013)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Chinchaladze N.: Harmonic vibration of cusped plates in the N-th approximation of Vekua’s hierarchical models. Arch. Mech. 65(5), 345–365 (2013)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Faculty of Exact and Natural Sciences, I. Vekua Institute of Applied MathematicsI. Javakhishvili Tbilisi State UniversityTbilisiGeorgia

Personalised recommendations