Skip to main content

Extension, inflation and torsion of a residually stressed circular cylindrical tube

Abstract

In this paper, we provide a new example of the solution of a finite deformation boundary-value problem for a residually stressed elastic body. Specifically, we analyse the problem of the combined extension, inflation and torsion of a circular cylindrical tube subject to radial and circumferential residual stresses and governed by a residual-stress dependent nonlinear elastic constitutive law. The problem is first of all formulated for a general elastic strain-energy function, and compact expressions in the form of integrals are obtained for the pressure, axial load and torsional moment required to maintain the given deformation. For two specific simple prototype strain-energy functions that include residual stress, the integrals are evaluated to give explicit closed-form expressions for the pressure, axial load and torsional moment. The dependence of these quantities on a measure of the radial strain is illustrated graphically for different values of the parameters (in dimensionless form) involved, in particular the tube thickness, the amount of torsion and the strength of the residual stress. The results for the two strain-energy functions are compared and also compared with results when there is no residual stress.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Rivlin R.S.: Torsion of a rubber cylinder. J. Appl. Phys. 18, 444–449 (1947)

    Article  ADS  Google Scholar 

  2. 2

    Rivlin R.S.: Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. A 241, 379–397 (1948)

    MathSciNet  Article  ADS  MATH  Google Scholar 

  3. 3

    Rivlin R.S.: A note on the torsion of an incompressible highly-elastic cylinder. Math. Proc. Camb. Philos. Soc. 45, 485–487 (1949)

    MathSciNet  Article  ADS  MATH  Google Scholar 

  4. 4

    Rivlin R.S., Saunders D.W.: Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. A 243, 251–288 (1951)

    Article  ADS  MATH  Google Scholar 

  5. 5

    Gent A.N., Rivlin R.S.: Experiments on the mechanics of rubber II: the torsion, inflation and extension of a tube. Proc. Phys. Soc. B. 65, 487–501 (1952)

    Article  ADS  Google Scholar 

  6. 6

    Green A.E., Adkins J.E.: Large Elastic Deformations. Clarendon Press, Oxford (1970)

    MATH  Google Scholar 

  7. 7

    Ogden R.W., Chadwick P.: On the deformation of solid and tubular cylinders of incompressible isotropic elastic materials. J. Mech. Phys. Solids 20, 77–90 (1972)

    Article  ADS  MATH  Google Scholar 

  8. 8

    Horgan C.O., Polignone D.A.: A note on the pure torsion of a circular cylinder for a compressible nonlinearly elastic material with nonconvex strain-energy. J. Elast. 37, 167–178 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Kirkinis E., Ogden R.W.: On extension and torsion of a compressible elastic circular cylinder. Math. Mech. Solids. 7, 373–392 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10

    Polignone D.A., Horgan C.O.: Pure torsion of compressible non-linearly elastic circular cylinders. Q. Appl. Math. 49, 591–607 (1991)

    MathSciNet  MATH  Google Scholar 

  11. 11

    Horgan C.O., Saccomandi G.: Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility. J. Elast. 56, 159–170 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12

    Kanner L., Horgan C.O.: On extension and torsion of strain-stiffening rubber-like elastic circular cylinders. J. Elast. 93, 39–61 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13

    Horgan C.O., Murphy J.G.: Torsion of incompressible fibre-reinforced nonlinearly elastic circular cylinders. J. Elast. 103, 235–246 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14

    Horgan C.O., Murphy J.G.: Finite extension and torsion of fiber-reinforced non-linearly elastic circular cylinders. Int. J. NonLinear Mech. 47, 97–104 (2012)

    Article  ADS  Google Scholar 

  15. 15

    Rivlin R.S.: Large elastic deformations of isotropic materials VI. further results in the theory of torsion, shear and flexure. Philos. Trans. R. Soc. Lond. A 242, 173–195 (1949)

    MathSciNet  Article  ADS  MATH  Google Scholar 

  16. 16

    Zidi M.: Torsion and telescopic shearing of a compressible hyperelastic tube. Mech. Res. Commun. 26, 245–252 (1999)

    Article  MATH  Google Scholar 

  17. 17

    Zidi M.: Finite torsion and anti-plane shear of a compressible hyperelastic and transversely isotropic tube. Int. J. Eng. Sci. 38, 1487–1496 (2000)

    Article  Google Scholar 

  18. 18

    Zidi M.: Finite torsion and shearing of a compressible and anisotropic tube. Int. J. NonLinear Mech. 35, 1115–1126 (2000)

    Article  ADS  MATH  Google Scholar 

  19. 19

    Zidi M., Cheref M.: Finite deformations of fibre-reinforced vascular prosthesis. Mech. Res. Commun. 28, 55–62 (2001)

    Article  MATH  Google Scholar 

  20. 20

    El Hamdaoui M., Merodio J., Ogden R.W., Rodríguez J.: Finite elastic deformations of transversely isotropic circular cylindrical tubes. Int. J. Solids Struct. 51, 1188–1196 (2014)

    Article  Google Scholar 

  21. 21

    Paige, R.E.: FEA in the design process of rubber bushings. In: ABAQUS Users’ Conference. Simulia, Dassault Systèmes, Providence, RI, pp. 1–15 (2002)

  22. 22

    Paige, R.E., Mars, W.V.: Implications of the Mullins effect on the stiffness of a pre-loaded rubber component. In: ABAQUS Users’ Conference, pp. 1–15. Simulia, Dassault Systèmes, Providence, RI (2004)

  23. 23

    Rachev A.: Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. J. Biomech. 30, 819–827 (1997)

    Article  Google Scholar 

  24. 24

    Rachev A., Hayashi K.: Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann. Biomed. Eng. 27, 459–468 (1999)

    Article  Google Scholar 

  25. 25

    Holzapfel G.A., Gasser T.C., Ogden R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26

    Ogden, R.W., Schulze-Bauer, C.A.J.: Phenomenological and structural aspects of the mechanical response of arteries. In: Proceedings of the ASME Mechanics in Biology Symposium, Orlando, November 2000. ASME AMD-vol. 242/BED-vol. 46, pp. 125–140. ASME, New York (2000)

  27. 27

    Ogden, R.W.: Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue (Lecture notes, CISM Course on the Biomechanics of Soft Tissue in Cardiovascular Systems), pp. 65–108. CISM Courses and Lectures Series 441. Springer, Wien (2003)

  28. 28

    Holzapfel G.A., Ogden R.W.: Modelling the layer-specific 3D residual stresses in arteries, with an application to the human aorta. J. R. Soc. Interface 7, 787–799 (2010)

    Article  Google Scholar 

  29. 29

    Zidi M.: Combined torsion, circular shearing and axial shearing of a compressible hyper elastic and prestressed tube. J. Appl. Mech. 67, 33–40 (2000)

    Article  ADS  MATH  Google Scholar 

  30. 30

    Zidi M.: Azimuthal shearing and torsion of a compressible and prestressed tube. Int. J. Non-Linear Mech. 35, 209–210 (2000)

    MATH  Google Scholar 

  31. 31

    Zidi M.: Effects of a prestress on a reinforced, nonlinearly elastic and compressible tube subjected to combined deformations. Int. J. Solids Struct. 38, 4657–4669 (2001)

    Article  MATH  Google Scholar 

  32. 32

    Zidi M., Cheref M.: Finite deformations of a hyperelastic, compressible and fibre reinforced tube. Eur. J. Mech. A/Solids 21, 971–980 (2002)

    Article  MATH  Google Scholar 

  33. 33

    Hoger A.: On the residual stress possible in an elastic body with material symmetry. Arch. Ration. Mech. Anal. 88, 271–290 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34

    Hoger A.: The constitutive equation for finite deformations of a transversely isotropic hyperelastic material with residual stress. J. Elast. 33, 107–118 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35

    Shams M., Destrade M., Ogden R.W.: Initial stresses in elastic solids: constitutive laws and acoustoelasticity. Wave Motion 48, 552–567 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36

    Ogden R.W., Singh B.: Propagation of waves in an incompressible transversely isotropic elastic solid with initial stress: Biot revisited. J. Mech. Mater. Struct. 6, 453–477 (2011)

    Article  Google Scholar 

  37. 37

    Shams M., Ogden R.W.: On Rayleigh-type surface waves in an initially stressed incompressible elastic solid. IMA J. Appl. Math. 79, 360–376 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  38. 38

    Ogden R.W., Singh B.: The effect of rotation and initial stress on the propagation of waves in a transversely isotropic elastic solid. Wave Motion 51, 1108–1126 (2014)

    MathSciNet  Article  Google Scholar 

  39. 39

    Hoger A.: On the determination of residual stress in an elastic body. J. Elast. 16, 303–324 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  40. 40

    Johnson B.E., Hoger A.: The dependence of the elasticity tensor on residual stress. J. Elast. 33, 145–165 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  41. 41

    Merodio J., Ogden R.W., Rodríguez J.: The influence of residual stress on finite deformation elastic response. Int. J. NonLinear Mech. 56, 43–49 (2013)

    Article  ADS  Google Scholar 

  42. 42

    Ogden, R.W.: Nonlinear elasticity with application to soft fibre-reinforced materials. In: CISM Course on Nonlinear Mechanics of Soft Fibrous Materials. CISM Courses and Lectures Series 559. Springer, Wien (2014)

  43. 43

    Ogden R.W.: Non-linear Elastic Deformations. Dover Publications, New York (1997)

    Google Scholar 

  44. 44

    Holzapfel G.A.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Wiley, Chichester (2000)

    MATH  Google Scholar 

  45. 45

    Spencer A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, vol. 1, pp. 239–353. Academic Press, New York (1971)

  46. 46

    Ogden R.W., Singh B.: Propagation of waves in an incompressible transversely isotropic elastic solid with initial stress: Biot revisited. J. Mech. Mater. Struct. 6, 453–477 (2011)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ray W. Ogden.

Additional information

Communicated by Victor Eremeyev, Peter Schiavone and Francesco dell'Isola.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Merodio, J., Ogden, R.W. Extension, inflation and torsion of a residually stressed circular cylindrical tube. Continuum Mech. Thermodyn. 28, 157–174 (2016). https://doi.org/10.1007/s00161-015-0411-z

Download citation

Keywords

  • Residual stress
  • Finite elasticity
  • Elastic tube deformation

Mathematics Subject Classification

  • 74B20
  • 74E10