Skip to main content
Log in

Structural control design and defective systems

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The intersection between the two concepts of structural control and defectiveness is discussed. Two simple oscillators differently connected by serial spring-dashpot arrangement are used to simply simulate technically relevant cases: dissipatively coupled adjacent free-standing structures, structures equipped by TMD and base-isolated structures. Eigensolution loci of the two classes of systems are tracked against one or more significant parameters to determine the potential benefits realized by different combinations of stiffness and viscosity. In both studied cases, codimension-two manifolds in the four-parameter space corresponding to coalescing eigenvalues are determined by analytical expressions. Conditions to discern semi-simple eigenvalues from defective ones confirm that the latter is the generic case laying in a two-parameter space while the former span a one-parameter subspace. The knowledge of the location of the defective systems in the parameter space permits to determine regions with specific dynamical properties useful for control design purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernal D.: Closely spaced roots and defectiveness in second-order systems. ASCE J. Eng. Mech. 131, 276–281 (2005)

    Article  Google Scholar 

  2. Chen S.H., Xu T., Han W.Z.: Matrix perturbation for linear vibration defective systems. Acta Mech. Sin. 24, 747–753 (1992)

    Google Scholar 

  3. Dieci L., Pugliese N.: Two-parameter SVD: coalescing singular values and periodicity. SIAM J. Matrix Anal. Appl. 31, 375–403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Friswell M.I., Prells U., Garvey S.D.: Low-rank fast sensitivity analysis of defective system. J. Sound Vib. 279, 757–774 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Gattulli V., Di Fabio F., Luongo A.: Simple and double Hopf bifurcations in aeroelastic oscillators with tuned mass dampers. J Frankl. Inst. 338, 187–201 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gattulli V., Di Fabio F., Luongo A.: One to one double Hopf bifurcation in aeroelastic oscillators with tuned mass dampers. J. Sound Vib. 262, 201–217 (2003)

    Article  ADS  MATH  Google Scholar 

  7. Gattulli V., Di Fabio F., Luongo A.: Nonlinear tuned mass damper for self-excited oscillations. Wind Struct. 7, 251–264 (2004)

    Article  Google Scholar 

  8. Gattulli V., Potenza F., Lepidi M.: Damping performance of two simple oscillators coupled by a visco-elastic connection. J. Sound Vib. 332, 6934–6948 (2013)

    Article  ADS  Google Scholar 

  9. Krenk S.: Complex modes and frequencies in damped structural vibrations. J. Sound Vib. 270, 981–996 (2004)

    Article  ADS  Google Scholar 

  10. Krenk, S.: Dampers on Flexible Structures, Lectures Presented at “Semi-active Vibration Suppression—The Best from Active and Passive Technologies CISM, Udine, October 1–5 (2007)

  11. Lancaster, P.: Lambda-Matrices and Vibrating Systems. Pergamon Press, Oxford (1966) (reprinted by Dover Publications Inc., New York, 2002)

  12. Lepidi M.: Multi-parameter perturbation methods for the eigensolution sensitivity analysis of nearly-resonant non-defective multi-degree-of-freedom systems. J. Sound Vib. 332, 1011–1032 (2013)

    Article  ADS  Google Scholar 

  13. Luongo A.: Eigensolutions sensitivity for nonsymmetric matrices with repeated eigenvalues. AIAA J. 31, 1321–1328 (1993)

    Article  ADS  MATH  Google Scholar 

  14. Luongo A.: Eigensolutions of perturbed nearly defective matrices. J. Sound Vib. 185, 377–395 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Luongo A.: Free vibrations and sensitivity analysis of a defective two degree-of-freedom system. AIAA J. 33, 120–127 (1995)

    Article  ADS  MATH  Google Scholar 

  16. Main J., Krenk S.: Efficiency and tuning of viscous dampers on discrete systems. J. Sound Vib. 286, 97–122 (2005)

    Article  ADS  Google Scholar 

  17. Premount A.: Vibration Control of Active Structures, 3rd edn. Springer, Berlin (2011)

    Book  Google Scholar 

  18. Xu T., Xu T., Zuo W., Hao L.: Fast sensitivity analysis of defective system. Appl. Math. Comput. 217, 3248–3256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yao J.T.P.: Concept of structural control. J. Struct. Div. 98(7), 1567–1574 (1972)

    Google Scholar 

  20. Zare, A.R., Ahmadizadeh, M.: Design of viscous fluid passive structural control systems using pole assignment algorithm. Struct. Control Health Monit (2013). doi:10.1002/stc.1633

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Gattulli.

Additional information

Communicated by Francesco dell'Isola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gattulli, V., Potenza, F. Structural control design and defective systems. Continuum Mech. Thermodyn. 28, 733–749 (2016). https://doi.org/10.1007/s00161-014-0410-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0410-5

Keywords

Navigation