Abstract
A model of a mixture of bone tissue and bioresorbable material with voids was used to numerically analyze the physiological balance between the processes of bone growth and resorption and artificial material resorption in a plate-like sample. The adopted model was derived from a theory for the behavior of porous solids in which the matrix material is linearly elastic and the interstices are void of material. The specimen—constituted by a region of bone living tissue and one of bioresorbable material—was acted by different in-plane loading conditions, namely pure bending and shear. Ranges of load magnitudes were identified within which physiological states become possible. Furthermore, the consequences of applying different loading conditions are examined at the end of the remodeling process. In particular, maximum value of bone and material mass densities, and extensions of the zones where bone is reconstructed were identified and compared in the two different load conditions. From the practical view point, during surgery planning and later rehabilitation, some choice of the following parameters is given: porosity of the graft, material characteristics of the graft, and adjustment of initial mixture tissue/bioresorbable material and later, during healing and remodeling, optimal loading conditions.
Similar content being viewed by others
References
Andreaus U., Colloca M.: Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method. Proc. Inst. Mech. Eng. H 223(5), 589–605 (2009)
Andreaus U., Colloca M., Iacoviello D.: An optimal control procedure for bone adaptation under mechanical stimulus. Control Eng. Pract. 20(6), 575–583 (2012). doi:10.1016/j.conengprac.2012.02.002
Andreaus, U., Colloca, M., Iacoviello, D.: Modeling of trabecular architecture as result of an optimal control procedure. In: Lecture Notes in Computational Vision and Biomechanics, vol. 4. Springer Netherlands (2013)
Andreaus U., Colloca M., Iacoviello D.: Optimal bone density distributions: numerical analysis of the osteocyte spatial influence in bone remodeling. Comput. Methods Programs Biomed. 113(1), 80–91 (2014). doi:10.1016/j.cmpb.2013.09.00
Andreaus U., Colloca M., Iacoviello D., Pignataro M.: Optimal-tuning pid control of adaptive materials for structural efficiency. Struct. Multidiscip. Optim. 43(1), 43–59 (2011)
Andreaus U., Colloca M., Toscano A.: Mechanical behaviour of a prosthesized human femur: a comparative analysis between walking and stair climbing by using the finite element method. Biophys. Bioeng. Lett. 1(3), 1–15 (2008)
Andreaus, U., Giorgio, I., Lekszycki, T.: A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. ZAMM—J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik (2013). doi:10.1002/zamm.201200182
Andreaus, U., Giorgio, I., Madeo, A.: Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. ZAMP - Zeitschrift für angewandte Mathematik und Physik, 1–29 (2014). doi:10.1007/s00033-014-0403-z
Batra G.: On Hamilton’s principle for thermo-elastic fluids and solids, and internal constraints in thermo-elasticity. Arch. Ration. Mech. Anal. 99(1), 37–59 (1987)
Bevill G., Eswaran S.K., Farahmand F., Keaveny T.M.: The influence of boundary conditions and loading mode on high-resolution finite element-computed trabecular tissue properties. Bone 44(4), 573-8 (2009). doi:10.1016/j.bone.2008.11.015
Burger E.H., Klein-Nulend J.: Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J. 13(9001), S101–S112 (1999)
Burger E.H., Klein-Nulend J.: Responses of bone cells to biomechanical forces in vitro. Adv. Dental Res. 13(1), 93–98 (1999)
Carcaterra, A., Akay, A.: Dissipation in a finite-size bath. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84(1), 011121 (2011). doi:10.1103/PhysRevE.84.011121
Carcaterra, A., Roveri, N., Pepe, G.: Fractional dissipation generated by hidden wave-fields. Math. Mech. Solids (2014). doi:10.1177/1081286513518941
Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids (2014). doi:10.1177/1081286514531265
Cazzani A., Rovati M.: Sensitivity analysis and optimum design of elastic-plastic structural systems. Meccanica 26(2–3), 173–178 (1991)
Chun H., Shin H., Han C., Lee S.: Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis. Int. J. Oral Maxillofac. Implants 21(2), 195–202 (2006)
Cowin S.C., Mehrabadi M.M.: Anisotropic symmetries of linear elasticity. Appl. Mech. Rev. 48(5), 247–285 (1995)
Cowin S.C., Nunziato J.W.: Linear elastic materials with voids. J. Elast. 13(2), 125–147 (1983)
dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids (2014). doi:10.1177/1081286513509811
dell’Isola F., Kosinski W.: Deduction of thermodynamic balance laws for bidimensional nonmaterial directed continua modelling interphase layers. Arch. Mech. 45, 333–359 (1993)
dell’Isola F., Romano, A.: On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface. Int. J. Eng. Sci. 25, 1459–1468 (1987)
dell’Isola F., Vidoli S.: Continuum modelling of piezoelectromechanical truss beams: an application to vibration damping. Arch. Appl. Mech. 68(1), 1–19 (1998)
dell’Isola F., Woźniak C.: On continuum modelling the interphase layers in certain two-phase elastic solids. ZAMM—J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 77(7), 519–526 (1997)
dell’Isola F., Woźniak C.: On phase transition layers in certain micro-damaged two-phase solids. Int. J. Fract. 83(2), 175–189 (1997)
Descamps B.: Computational Design of Lightweight Structures: Form Finding and Optimization. Wiley, New York (2014)
Eremeyev V.A., Pietraszkiewicz W.: Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1), 41–67 (2009)
Eremeyev V.A., Pietraszkiewicz W.: Thermomechanics of shells undergoing phase transition. J. Mech. Phys. Solids 59(7), 1395–1412 (2011). doi:10.1016/j.jmps.2011.04.005
Eringen A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28(12), 1291–1301 (1990)
Farrar, D.: Bioresorbable polymers in orthopaedics. Medical Device Manufacturing & Technology, pp. 36–38 (2005)
Fatihhi S.J., Ardiyansyah S., Harun M.N., Rabiatul A.A.R., Jaafar A., Jaafar A.: Finite element simulation: the effects of loading modes at different anatomical sites of trabecular bone on morphological indices. Adv. Mater. Res. 845, 266–270 (2013)
Federico S.: Volumetric-distortional decomposition of deformation and elasticity tensor. Math. Mech. Solids 15(6), 672–690 (2009)
Federico S.: On the linear elasticity of porous materials. Int. J. Mech. Sci. 52(2), 175–182 (2010). doi:10.1016/j.ijmecsci.2009.09.006
Federico S.: Covariant formulation of the tensor algebra of non-linear elasticity. Int. J. Nonlinear Mech. 47(2), 273–284 (2012)
Federico S., Grillo A., Herzog W.: A transversely isotropic composite with a statistical distribution of spheroidal inclusions: a geometrical approach to overall properties. J. Mech. Phys. Solids 52(10), 2309–2327 (2004)
Federico, S., Grillo, A., Imatani, S.: The linear elasticity tensor of incompressible materials. Math. Mech. Solids, p. 1081286514550576 (2014). doi:10.1177/1081286514550576
Federico S., Grillo A., Wittum G.: Considerations on incompressibility in linear elasticity. Il Nuovo cimento della Società à italiana di fisica. C 32(1), 81 (2009)
Garusi E., Tralli A., Cazzani A.: An unsymmetric stress formulation for reissner-mindlin plates: a simple and locking-free rectangular element. Int. J. Comput. Eng. Sci. 5(3), 589–618 (2004)
Giorgio I., Culla A., Del Vescovo D.: Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch. Appl. Mech. 79(9), 859–879 (2009)
Greco L., Cuomo M.: B-Spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256(0), 251–269 (2013). doi:10.1016/j.cma.2012.11.017
Greco L., Cuomo M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput. Methods Appl. Mech. Eng. 269(0), 173–197 (2014). doi:10.1016/j.cma.2013.09.018
Greco L., Impollonia N., Cuomo M.: A procedure for the static analysis of cable structures following elastic catenary theory. Int. J. Solids Struct. 51(7), 1521–1533 (2014)
Grillo A., Federico S., Wittum G.: Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials. Int. J. Nonlinear Mech. 47(2), 388–401 (2012). doi:10.1016/j.ijnonlinmec.2011.09.026
Grillo, A., Wittum, G.: Growth and mass transfer in multi-constituent biological materials. In: ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010, vol. 1281, pp. 355–358. AIP Publishing (2010)
Grillo A., Wittum G., Federico S., Imatani S., Giaquinta G., Mićunović M.V.: Evolution of a fibre-reinforced growing mixture. Nuovo Cimento C 32C((1), 97–119 (2009). doi:10.1393/ncc/i2009-10356-1
Grillo, A., Wittum, G., Tomic, A., Federico, S.: Remodelling in statistically oriented fibre-reinforced materials and biological tissues. Math. Mech. Solids (2014). doi:10.1177/1081286513515265
Klein-Nulend J., Bacabac R.G., Mullender M.G.: Mechanobiology of bone tissue. Pathologie biologie 53(10), 576–580 (2005)
Klein-Nulend J., Bakkerl A.D., Bacabac R.G., Vatsa A., Weinbaum S.: Mechanosensation and transduction in osteocytes. Bone 54, 182–190 (2013)
Lekszycki T., dell’Isola F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM—J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 92(6), 426–444 (2012)
Li L.H., Kommareddy K.P., Pilz C., Zhou C.R., Fratzl P., Manjubala I.: In vitro bioactivity of bioresorbable porous polymeric scaffolds incorporating hydroxyapatite microspheres. Acta Biomater. 6(7), 2525-31 (2010). doi:10.1016/j.actbio.2009.03.028
Luongo A.: Perturbation methods for nonlinear autonomous discrete-time dynamical systems. Nonlinear Dyn. 10(4), 317–331 (1996)
Luongo A., Paolone A.: Perturbation methods for bifurcation analysis from multiple nonresonant complex eigenvalues. Nonlinear Dyn. 14(3), 193–210 (1997)
Luongo A., Piccardo G.: A continuous approach to the aeroelastic stability of suspended cables in 1:22 internal resonance. JVC/J. Vib. Control 14(1–2), 135–157 (2008)
Luongo A., Zulli D., Piccardo G.: A linear curved-beam model for the analysis of galloping in suspended cables. J. Mech. Mater. Struct. 2(4), 675–694 (2007)
Madeo A., Djeran-Maigre I., Rosi G., Silvani C.: The effect of fluid streams in porous media on acoustic compression wave propagation, transmission, and reflection. Contin. Mech. Thermodyn. 25(2–4), 173–196 (2013)
Madeo A., George D., Lekszycki T.: A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. Comptes Rendus Mécanique 340(8), 575–589 (2012)
Madeo A., Lekszycki T., dell’Isola F.: A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery. C R Méc 339(10), 625–640 (2011)
Madeo A., Placidi L., Rosi G.: Towards the design of metamaterials with enhanced damage sensitivity: second gradient porous materials. Res Nondestruct. Eval. 25(2), 99–124 (2014)
Maugin G.A.: Material Inhomogeneities in Elasticity, vol. 3. CRC Press, Boca Raton, FL (1993)
Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)
Misra A., Singh V.: Micromechanical model for viscoelastic-materials undergoing damage. Contin. Mech. Thermodyn. 25, 1–16 (2013)
Misra A., Yang Y.: Micromechanical model for cohesive materials based upon pseudo-granular structure. Int. J. Solids Struct. 47, 2970–2981 (2010)
Olsson T., Klarbring A.: Residual stresses in soft tissue as a consequence of growth and remodeling: application to an arterial geometry. Eur. J. Mech. A/Solids 27(6), 959–974 (2008)
Peng L., Bai J., Zeng X., Zhou Y.: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med. Eng. Phys. 28(3), 227–233 (2006)
Pietraszkiewicz W., Eremeyev V., Konopińska V.: Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM—J. Appl. Math. Mech. 87(2), 150–159 (2007). doi:10.1002/zamm.200610309
Placidi, L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn., 1–16 (2014). doi:10.1007/s00161-014-0338-9
Placidi L., dell’Isola F., Ianiro N., Sciarra G.: Variational formulation of pre-stressed solid–fuid mixture theory, with an application to wave phenomena. Eur. J. Mech. A Solids 27(4), 582–606 (2008)
Placidi L., Rosi G., Giorgio I., Madeo A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids 19(5), 555–578 (2014)
Porfiri M., dell’Isola F., Frattale Mascioli F.M.: Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric transducers. Int. J. Circuit Theory Appl. 32(4), 167–198 (2004). doi:10.1002/cta.273
Porfiri M., dell’Isola F., Santini E.: Modeling and design of passive electric networks interconnecting piezoelectric transducers for distributed vibration control. Int. J. Appl. Electromagn. Mech. 21(2), 69–87 (2005)
Quiligotti S., Maugin G.A., dell’Isola F.: An Eshelbian approach to the nonlinear mechanics of constrained solid-fluid mixtures. Acta Mech. 160(1-2), 45–60 (2003)
Shi X., Wang X., Niebur G.L.: Effects of loading orientation on the morphology of the predicted yielded regions in trabecular bone. Ann. Biomed. Eng. 37(2), 354-62 (2009). doi:10.1007/s10439-008-9619-4
Soltész U.: The influence of loading conditions on the life-times in fatigue testing of bone cements. J. Mater. Sci. Mater. Med. 5(9–10), 654–656 (1994)
Turco E., Caracciolo P.: Elasto-plastic analysis of kirchhoff plates by high simplicity finite elements. Comput. Methods Appl. Mech. Eng. 190(5), 691–706 (2000)
Vidoli S., dell’Isola F.: Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks. Eur. J. Mech. A/Solids 20(3), 435–456 (2001). doi:10.1016/S0997-7538(01)01144-5
Walpole L.J.: Elastic behavior of composite materials: theoretical foundations. Adv. Appl. Mech. 21, 169–242 (1981)
Walpole L.J.: Fourth-rank tensors of the thirty-two crystal classes: multiplication tables. Proc. R. Soc. Lond. A Math. Phys. Sci. 391(1800), 149–179 (1984)
Yeremeyev V., Freidin A., Sharipova L.: The stability of the equilibrium of two-phase elastic solids. J. Appl. Math. Mech. 71(1), 61–84 (2007). doi:10.1016/j.jappmathmech.2007.03.007
Zhu, X., Hao, H., Fan, K., Wang, Y., Ou, J.: Debond detection in RC structures using piezoelectric materials. In: Alexander, M.G., Beushausen, H-D., Dehn, F., Moyo, P. (eds.) Rehabilitation and Retrofitting, 2nd International Conference on Concrete Repair, ICCRRR-2, pp. 261–262. CRC Press, Cape Town, South Africa (2008). doi:10.1201/9781439828403.ch93
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Victor Eremeyev, Peter Schiavone and Francesco dell'Isola.
Rights and permissions
About this article
Cite this article
Giorgio, I., Andreaus, U. & Madeo, A. The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids. Continuum Mech. Thermodyn. 28, 21–40 (2016). https://doi.org/10.1007/s00161-014-0397-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00161-014-0397-y