Skip to main content
Log in

Effects of uncertainties on pulse attenuation in dimer granular chains with and without pre-compression

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this work, the effects of inherent variability of the geometric properties of dimer granular chains on their capacity to passively attenuate propagating pulses are investigated. Numerical studies are performed for both the nominal model and the system with uncertainty. The deterministic system is governed by a single parameter (the ratio of the radii of “heavy” and “light” beads of the dimer) and is fully rescalable with energy. The effects of uncertainty, i.e., of the spatial variability of the radii of the light (odd) beads of the granular chain, on the transmitted force at its boundary are investigated. Reliability analysis through Monte Carlo simulations and sensitivity analysis of the dimer with uncertain properties are carried out, and a deeper insight for improved bead configurations is provided. It is shown that the optimal level of force attenuation achieved with a deterministically predicted optimal parameter can be further increased when certain spatial variations in the parameter, based on specific wave number content, are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vakakis A.F., Gendelman O.V., Bergman L.A., McFarland D.M., Kerschen G., Lee Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Daraio C., Nesterenko V.F., Herbold E.B, Jin S.: Energy trapping and shock disintegration in a composite granular medium. Phys. Rev. Lett. 96(5), 058002 (2006)

    Article  ADS  Google Scholar 

  3. Nesterenko V.: Dynamics of Heterogeneous Materials. Springer, Berlin (2001)

    Book  Google Scholar 

  4. Nesterenko V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24(5), 733–743 (1983)

    Article  ADS  Google Scholar 

  5. Lazaridi A.N., Nesterenko V.F.: Observation of a new type of solitary waves in a one-dimensional granular medium. J. Appl. Mech. Tech. Phys. 26(3), 405–408 (1985)

    Article  ADS  Google Scholar 

  6. Starosvetsky Y., Vakakis A.F.: Traveling waves and localized modes in one-dimensional homogeneous granular chains with no precompression. Phys. Rev. E 82(2), 026603 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  7. Sen S., Mohan T.R.K.: Dynamics of metastable breathers in nonlinear chains in acoustic vacuum. Phys. Rev. E 79(3), 036603 (2009)

    Article  ADS  Google Scholar 

  8. Starosvetsky Y., Hasan M.A., Vakakis A.F., Manevitch L.I.: Strongly nonlinear beat phenomena and energy exchanges in weakly coupled granular chains on elastic foundations. SIAM J. Appl. Math. 72(1), 337–361 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hasan M.A., Cho S., Remick K., Vakakis A.F., McFarland D.M., Kriven W.M.: Primary pulse transmission in coupled steel granular chains embedded in PDMS matrix: experiment and modeling. Int. J. Solids Struct. 50(20–21), 3207–3224 (2013)

    Article  Google Scholar 

  10. Starosvetsky Y., Hasan M.A., Vakakis A.F.: Nonlinear pulse equipartition in weakly coupled ordered granular chains with no precompression. J. Comput. Nonlinear Dyn. 8(3), 034504–034504 (2013)

    Article  Google Scholar 

  11. Szelengowicz I., Hasan M.A., Starosvetsky Y., Vakakis A., Daraio C.: Energy equipartition in two-dimensional granular systems with spherical intruders. Phys. Rev. E 87(3), 032204 (2013)

    Article  ADS  Google Scholar 

  12. Hasan M.A., Starosvetsky Y., Vakakis A.F., Manevitch L.I.: Nonlinear targeted energy transfer and macroscopic analog of the quantum Landau–Zener effect in coupled granular chains. Phys. Nonlinear Phenom. 252, 46–58 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Jayaprakash K.R., Starosvetsky Y., Vakakis A.F., Peeters M., Kerschen G.: Nonlinear normal modes and band zones in granular chains with no pre-compression. Nonlinear Dyn. 63(3), 359–385 (2011)

    Article  MathSciNet  Google Scholar 

  14. Sen S., Hong J., Bang J., Avalos E., Doney R.: Solitary waves in the granular chain. Phys. Rep. 462(2), 21–66 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  15. Daraio C., Nesterenko V.F., Herbold E.B., Jin S.: Strongly nonlinear waves in a chain of Teflon beads. Phys. Rev. E 72(1), 016603 (2005)

    Article  ADS  Google Scholar 

  16. Porter M.A., Daraio C., Herbold E.B., Szelengowicz I., Kevrekidis P.G.: Highly nonlinear solitary waves in periodic dimer granular chains. Phys. Rev. E 77(1), 015601 (2008)

    Article  ADS  Google Scholar 

  17. Herbold E.B., Kim J., Nesterenko V.F., Wang S.Y., Daraio C.: Pulse propagation in a linear and nonlinear diatomic periodic chain: effects of acoustic frequency band-gap. Acta Mech. 205(1–4), 85–103 (2009)

    Article  MATH  Google Scholar 

  18. Fraternali F., Porter M.A., Daraio C.: Optimal design of composite granular protectors. Mech. Adv. Mater. Struct. 17(1), 1–19 (2009)

    Article  Google Scholar 

  19. Jayaprakash K.R., Starosvetsky Y., Vakakis A.F.: New family of solitary waves in granular dimer chains with no precompression. Phys. Rev. E 83(3), 036606 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  20. Jayaprakash K.R., Starosvetsky Y., Vakakis A.F., Gendelman O.V.: Nonlinear resonances leading to strong pulse attenuation in granular dimer chains. J. Nonlinear Sci. 23(3), 363–392 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Potekin R., Jayaprakash K.R., McFarland D.M., Remick K., Bergman L.A., Vakakis A.F.: Experimental study of strongly nonlinear resonances and anti-resonances in granular dimer chains. Exp. Mech. 53(5), 861–870 (2013)

    Article  Google Scholar 

  22. Harbola U., Rosas A., Romero A.H., Lindenberg K.: Pulse propagation in randomly decorated chains. Phys. Rev. E 82(1), 011306 (2010)

    Article  ADS  Google Scholar 

  23. Sen S., Manciu F.S., Manciu M.: Thermalizing an impulse. Phys. Stat. Mech. Appl. 299(3–4), 551–558 (2001)

    Article  MATH  Google Scholar 

  24. Wu D.T.: Conservation principles in solitary impulse propagation through granular chains. Phys. Stat. Mech. Appl. 315(1-2), 194–202 (2002)

    Article  MATH  Google Scholar 

  25. Nakagawa M., Agui J.H., Wu D.T., Extramiana D.V.: Impulse dispersion in a tapered granular chain. Granul. Matter 4(4), 167–174 (2003)

    Article  Google Scholar 

  26. Doney R.L., Sen S.: Impulse absorption by tapered horizontal alignments of elastic spheres. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 72(4 Pt 1), 041304 (2005)

    Article  ADS  Google Scholar 

  27. Sokolow A., Pfannes J.M.M., Doney R.L., Nakagawa M., Agui J.H., Sen S.: Absorption of short duration pulses by small, scalable, tapered granular chains. Appl. Phys. Lett. 87(25), 254104 (2005)

    Article  ADS  Google Scholar 

  28. Melo F., Job S., Santibanez F., Tapia F.: Experimental evidence of shock mitigation in a Hertzian tapered chain. Phys. Rev. E 73(4), 041305 (2006)

    Article  ADS  Google Scholar 

  29. Doney R., Sen S.: Decorated, tapered, and highly nonlinear granular chain. Phys. Rev. Lett. 97(15), 155502 (2006)

    Article  ADS  Google Scholar 

  30. Job S., Melo F., Sokolow A., Sen S.: Solitary wave trains in granular chains: experiments, theory and simulations. Granul. Matter 10(1), 13–20 (2007)

    Article  MATH  Google Scholar 

  31. Hodges C.H.: Confinement of vibration by structural irregularity. J. Sound Vib. 82(3), 411–424 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  32. Pierre C., Dowell E.H.: Localization of vibrations by structural irregularity. J. Sound Vib. 114(3), 549–564 (1987)

    Article  ADS  Google Scholar 

  33. Bendiksen O.O.: Mode localization phenomena in large space structures. AIAA J. 25(9), 1241–1248 (1987)

    Article  ADS  Google Scholar 

  34. Pierre C., Cha P.D.: Strong mode localization in nearly periodic disordered structures. AIAA J. 27(2), 227–241 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Photiadis D.M.: Anderson localization of one-dimensional wave propagation on a fluid-loaded plate. J. Acoust. Soc. Am. 91(2), 771–780 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  36. Vakais A., Cetinkaya C.: Mode localization in a class of multidegree-of-freedom nonlinear systems with cyclic symmetry. SIAM J. Appl. Math. 53(1), 265–282 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  37. Vakakis A., Nayfeh T., King M.: A multiple-scales analysis of nonlinear, localized modes in a cyclic periodic system. J. Appl. Mech. 60(2), 388–397 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Vakakis, A.F., Manevitch, L.I., Mikhlin, Y.V., Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Wiley, New York (2008)

  39. Luongo A.: Mode localization by structural imperfections in one-dimensional continuous systems. J. Sound Vib. 155(2), 249–271 (1992)

    Article  MATH  ADS  Google Scholar 

  40. Luongo A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25(1-3), 133–156 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Hodges C.H., Woodhouse J.: Vibration isolation from irregularity in a nearly periodic structure: theory and measurements. J. Acoust. Soc. Am. 74(3), 894–905 (1983)

    Article  ADS  Google Scholar 

  42. Langley R.S., Bardell N.S., Loasby P.M.: The optimal design of near-periodic structures to minimize vibration transmission and stress levels. J. Sound Vib. 207(5), 627–646 (1997)

    Article  ADS  Google Scholar 

  43. Romeo F., Luongo A.: Invariant representation of propagation properties for bi-coupled periodic structures. J. Sound Vib. 257(5), 869–886 (2002)

    Article  ADS  Google Scholar 

  44. Romeo F., Luongo A.: Vibration reduction in piecewise bi-coupled periodic structures. J. Sound Vib. 268(3), 601–615 (2003)

    Article  ADS  Google Scholar 

  45. Molinari A., Daraio C.: Stationary shocks in periodic highly nonlinear granular chains. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 80(5 Pt 2), 056602 (2009)

    Article  ADS  Google Scholar 

  46. Doney R.L., Agui, J.H., Sen, S.: Energy partitioning and impulse dispersion in the decorated, tapered, strongly nonlinear granular alignment: A system with many potential applications. J. Appl. Phys., 106(6):064905-13 (2009)

  47. Rubinstein R.Y., Kroese D.P.: Simulation and the Monte Carlo Method. Wiley, Hoboken (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hasan.

Additional information

Communicated by Francesco dell'Isola and Giuseppe Piccardo.

The authors are pleased to provide this contribution in honor of Professor Angelo Luongo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.A., Pichler, L., Starosvetsky, Y. et al. Effects of uncertainties on pulse attenuation in dimer granular chains with and without pre-compression. Continuum Mech. Thermodyn. 27, 749–766 (2015). https://doi.org/10.1007/s00161-014-0389-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0389-y

Keywords

Navigation