Skip to main content
Log in

Resonant phase dynamics in 0-π Sine–Gordon facets

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A locally phase-shifted Sine–Gordon model well accounts for the phenomenology of unconventional Josephson junctions. The phase dynamics shows resonant modes similar to Fiske modes that appear both in the presence and in the absence of the external magnetic field in standard junctions. In the latter case, they are also in competition with zero field propagation of Sine–Gordon solitons, i.e., fluxons, which give rise to the so-called zero field steps in the current–voltage (I–V) of the junction. We numerically study the I–V characteristics and the resonances magnetic field patterns for some different faceting configurations, in various dissipative regimes, as a function of temperature. The simulated dynamics of the phase is analyzed for lower-order resonances. We give evidence of a nontrivial dynamics due to the interaction of propagating fluxons with localized semifluxons. Numerical results are compared with experimental outcomes obtained on high-quality high-Tc grain boundary YBCO junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luongo A., Zulli D.: Dynamic instability of inclined cables under combined wind flow and support motion. Nonlinear Dyn. 67(1): 71–87 (2011)

    Article  MathSciNet  Google Scholar 

  2. Luongo A., Zulli D., Piccardo G.: Analytical and numerical approaches to nonlinear galloping of internally-resonant suspended cables. J. Sound Vib. 315(3): 375–393 (2008)

    Article  ADS  Google Scholar 

  3. Luongo A., Zulli D.: Dynamic analysis of externally excited NES-controlled systems via a mixed Multiple Scale/Harmonic Balance algorithm. Nonlinear Dyn. 70(3): 2049–2061 (2012)

    Article  MathSciNet  Google Scholar 

  4. McLaughlin D.W., Scott A.C.: Fluxon interactions. Appl. Phys. Lett. 30: 545 (1977)

    Article  ADS  Google Scholar 

  5. Filatrella G., Parmentier R.D., Rotoli G.: Phase locking of fluxons oscillations in long Josephson junctions with surface losses. Phys. Lett. A 148: 122 (1990)

    Article  ADS  Google Scholar 

  6. Filatrella G., Rotoli G., Salerno M.: Suppression of chaos in Sine–Gordon system. Phys. Lett. A 178: 81 (1993)

    Article  ADS  Google Scholar 

  7. Ustinov A.V., Cirillo M., Larsen B.H., Oboznov V.A., Carelli P., Rotoli G.: Experimental and numerical study of dynamic regimes in a discrete sine–Gordon lattice. Phys. Rev. B 51: 3081 (1995)

    Article  ADS  Google Scholar 

  8. Petraglia A., Filatrella G., Rotoli G.: Self-field effects in Josephson junctions arrays. Phys. Rev. B 53: 2732 (1996)

    Article  ADS  Google Scholar 

  9. De Leo C., Rotoli G., Nielsen A., Barbara P., Lobb C.: Mutual inductance route to paramagnetic Meissner effect in 2D arrays of Josephson junctions. Phys. Rev. B 64: 144518 (2001)

    Article  ADS  Google Scholar 

  10. Filatrella G., Rotoli G., Grombech-Jensen N., Pedersen N.F., Parmentier R.D.: Model studies of long Josephson junction arrays coupled to high-Q resonator. J. Appl. Phys. 72: 3179 (1992)

    Article  ADS  Google Scholar 

  11. Rotoli G., De Leo C., Ghigo G., Gozzelino L., Camerlingo C.: Josephson junction network as a tool to simulate intergrain superconducting channels in YBCO films. Int. J. Phys. B 14: 3068 (2001)

    Article  ADS  Google Scholar 

  12. De Leo C., Rotoli G.: Magnetization of multiply connected superconductors with and without π-junctions loops. Supercond. Sci. Technol. 15: 1716 (2002)

    ADS  Google Scholar 

  13. Pignataro M., Luongo A.: Asymmetric interactive buckling of thin-walled columns with initial imperfections. Thin-Walled Struct. 5(5): 365–382 (1987)

    Article  Google Scholar 

  14. Luongo A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25(1–3): 133–156 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Belyakov A.O., Seyranian A.P., Luongo A.: Dynamics of the pendulum with periodically varying length. Physica D Nonlinear Phenom. 238(16): 1589–1597 (2009)

    Article  MATH  ADS  Google Scholar 

  16. Kirtley J.R., Moler K.A., Scalapino D.J.: Spontaneous flux and magnetic interference patterns in 0-π. Josephson junctions. Phys. Rev. B 56: 886 (1997)

    Article  ADS  Google Scholar 

  17. Rotoli G.: Induced paramagnetic states by localized π-loops in grain boundaries. Phys. Rev. B 68: 052505 (2003)

    Article  ADS  Google Scholar 

  18. Goldobin E., Koelle D., Kleiner R.: Ground states and bias-current-induced rearrangement of semifluxons in 0-π long Josephson junctions. Phys. Rev. B 67: 224515 (2003)

    Article  ADS  Google Scholar 

  19. Smilde H.J.H., Ariando B., Blank D.H.A., Gerritsma G.J., Hilgenkamp H., Rogalla H.: d-waveinduced Josephson current counterflow in YBa2Cu3O7/Nb zigzag junctions. Phys. Rev. Lett. 88: 057004 (2002)

    Article  ADS  Google Scholar 

  20. Hilgenkamp H., Ariando H.J.H.S., Blank D.H.A., Rijnders G., Rogalla H., Kirtley J.R., Tsuei C.C.: Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays. Nature 422: 50 (2003)

    Article  ADS  Google Scholar 

  21. Goldobin E., Stefanakis N., Koelle D., Kleiner R.: Fluxon-semifluxon interaction in an annular long Josephson 0-π junction. Phys. Rev. B 70: 094520 (2004)

    Article  ADS  Google Scholar 

  22. Rotoli G.: Unconventional Josephson junction arrays for qubit devices. IEEE Trans. Supercond. 15: 852 (2005)

    Article  Google Scholar 

  23. Stefanakis N.: Resonant flux motion and I–V characteristics in frustrated Josephson junctions. Phys. Rev. B 66: 214524 (2002)

    Article  ADS  Google Scholar 

  24. Goldobin E., Sterck A., Gaber T., Koelle D., Kleiner R.: Dynamics of semifluxons in Nb long Josephson 0-π junctions. Phys. Rev. Lett. 92: 057005 (2004)

    Article  ADS  Google Scholar 

  25. Lazarides N.: Critical current and fluxon dynamics in overdamped 0-π Josephson junctions. Phys. Rev. B 69: 212501 (2004)

    Article  ADS  Google Scholar 

  26. Stornaiuolo D., Rotoli G., Cedergren K., Born D., Bauch T., Lombardi F., Tafuri F.: Submicron YBaCuO biepitaxial Josephson junctions: d-wave effects and phase dynamics. J. Appl. Phys. 107: 113901 (2010)

    Article  ADS  Google Scholar 

  27. Tafuri F., Kirtley J.R.: Weak links in high critical temperature superconductors. Rep. Prog. Phys. 68: 2573 (2005)

    Article  ADS  Google Scholar 

  28. Hilgenkamp H., Mannhart J.: Grain boundaries in high-T c superconductors. Rev. Mod. Phys. 74: 485 (2002)

    Article  ADS  Google Scholar 

  29. Cedergren K., Kirtley J.R., Bauch T., Rotoli G., Troeman A., Hilgenkamp H., Tafuri F., Lombardi F.: Interplay between static and dynamic properties of semi-fluxons in YBaCuO Josephson junctions. Phys. Rev. Lett. 104: 177003 (2010)

    Article  ADS  Google Scholar 

  30. Salerno M., Samuelsen M.R., Filatrella G., Pagano S., Parmentier R.D.: Microwave phase locking of Josephson-junction fluxon oscillators. Phys. Rev. B 41: 6641 (1990)

    Article  ADS  Google Scholar 

  31. Nappi C., Lisitskiy M.P., Rotoli G., Cristiano R., Barone A.: New fluxon resonant mechanism in annular Josephson tunnel structures. Phys. Rev. Lett. 93: 187001 (2004)

    Article  ADS  Google Scholar 

  32. Fulton T.A., Dynes R.C.: Single vortex propagation in Josephson tunnel junctions. Solid State Commun. 12: 57 (1973)

    Article  ADS  Google Scholar 

  33. Kulik I.O., Zh. Eksp. Teor. Fiz., Theory of “steps” of voltage-current characteristic of the Josephson tunnel current, Pisma Red. 2, 134 (1965) [JETP Lett. 2, 84 (1965)].

  34. Ernè S.N., Ferrigno A., Parmentier R.D.: Fluxon propagation and Fiske steps in long Josephson tunnel junctions. Phys. Rev. B 27: 5440 (1983)

    Article  ADS  Google Scholar 

  35. Olsen O.H., Samuelsen M.R.: Fluxon propagation in long Josephson junctions with external magnetic field. J. Appl. Phys. 52: 6247 (1981)

    Article  ADS  Google Scholar 

  36. Cirillo M., Gronbech-Jensen N., Samuelsen M., Salerno M., Verona Rinati G.: Fiske modes and Eck steps in long Josephson junctions: theory and experiments. Phys. Rev. B 58: 12377 (1998)

    Article  ADS  Google Scholar 

  37. Tinkham M.: Introduction to Superconductivity. McGraw-Hill, New York (1996)

    Google Scholar 

  38. Pfeiffer J., Kemmler M., Koelle D., Kleiner R., Goldobin E., Weides M., Feofanov A.K., Lisenfeld J., Ustinov A.V.: Static and dynamic properties of 0, π, and 0-π ferromagnetic Josephson tunnel junctions. Phys. Rev. B 77: 214506 (2008)

    Article  ADS  Google Scholar 

  39. The criterium is αl < π, where best HTC junctions have αl ~ 4. This implies an Eck step and/or Flux-Flow dynamics rather than a resonant dynamics

  40. Barone A., Paterno G.: Physics and Applications of Josephson Effect. Wiley, New York (1982)

    Book  Google Scholar 

  41. Goldobin E., Vogel K., Crasser O., Walser R., Schleich W.P., Koelle D., Kleiner R.: Quantum tunneling of semifluxons in a 0-π-0 long Josephson junction. Phys. Rev. B 72: 054527 (2005)

    Article  ADS  Google Scholar 

  42. The length scaling is given by the simple formula \({a_j=\bar{a}_j\sqrt{\frac{J_j}{\bar{J}_j}}}\) where J j is the critical current density in the model facet and j̄ j the critical current density in the original facet. Our assumption simply set J j  = J 0 = 1

  43. Carcaterra, A., Akay, A.: Dissipation in a finite-size bath. Phys. Rev. E 84 (2011)

  44. Bauch T., Lombardi F., Tafuri F., Barone A., Rotoli G., Delsing P., Cleason T.: Macroscopic quantum tunneling in d-wave YBCO Josephson junctions. Phys. Rev. Lett. 94: 087003 (2005)

    Article  ADS  Google Scholar 

  45. Bauch T., Lindstrom T., Tafuri F., Rotoli G., Delsing P., Cleason T., Lombardi F.: Quantum dynamics of a d-wave Josephson junction. Science 311: 56 (2006)

    Article  ADS  Google Scholar 

  46. Rotoli G.: Magnetization states in annular Josephson junction π-arrays in contributed book Research Signpost: New Developments in Josephson Junctions Research ISBN 978-81-7895-328-1, S. A. Sergeenkov ed., 2008

  47. The presence of a ZFS of order k is a close consequence of the junction capacity to accommodate k propagating fluxons. As the spatial extent of a fluxon is roughly 1 in normalized units, when k is of the order of l fluxon dynamics become problematic and normally dissipation will inhibit solitonic dynamics even before this limit. Indeed in conventional junctions it is difficult to observe more than 3 ZFS for a junction normalized length l≃5. Other effects came into play like “surface” dissipation which make the ZFS soon unstable (see S. Pagano, PhD thesis, The Technical University of Denmark 1986)

  48. Nappi C., Sarnelli E., Adamo M., Navacerrada M.A.: Fiske modes in 0-π Josephson junctions. Phys. Rev. B 74: 144504 (2006)

    Article  ADS  Google Scholar 

  49. By “stable” here we mean that pattern is “accessible” by using the standard procedure to sweep bias current along the resonance. A low order step pattern could be difficult to be reached by sweeping the bias current just below the resonance because, at low voltage values, the phase can very easily return in the zero voltage state on the critical current. In some cases only by chance it is possible to reach these resonances quickly going up in bias current sweep. In nonlinear dynamics terms their “basin of attraction” is very small and could be bypassed by other larger attractors. Moreover, here we search this stability not just for one resonance, but for its full dependence on magnetic field

  50. The complexity of the resonance pattern is increasing with N. The number of resonance pattern peaks at order k = 1 increases from 7 to 11 going from N = 4 to N = 6. The same happens for order k = 2, but in this case the increase is of just one peak per facet units, i.e., we go from 4 at N = 2 to 7 at N = 5. For the order k = 3 there is a similar increase of peak number, but the exact law is less clear because in some case, e.g., for N = 5 the large peaks may be cover the small peaks between them

  51. Niemeyer, J.: Josephson voltage standards. In: Seeber, B. (ed.) Handbook of Applied Superconductivity, pp. 1813–1834. Institute of Physics Publishing, Bristol (1998)

  52. Kleiner R., Koelle D., Ludwig F., Clarke J.: Superconducting quantum interference devices: state of the art and applications. Proc. IEEE 92(10): 1534 (2004)

    Article  Google Scholar 

  53. Zmuidzinas J., Richards P.L.: Superconducting detectors and mixers for millimeter and submillimeter astrophysics. Proc. IEEE 92: 1597 (2004)

    Article  ADS  Google Scholar 

  54. Barbara P., Cawthorne A.B., Shitov S.V., Lobb C.J.: Stimulated emission and amplification in Josephson junction arrays. Phys. Rev. Lett. 82(9): 1963 (1999)

    Article  ADS  Google Scholar 

  55. Tsuei C.C., Kirtley J.R.: Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72: 969 (2000)

    Article  ADS  Google Scholar 

  56. Blatter G., Geshkenbein V.B., Ioffe L.B.: Design aspects of superconducting-phase quantum bits. Phys. Rev. B 63: 174511 (2001)

    Article  ADS  Google Scholar 

  57. Tsuei C.C., Kirtley J.R., Chi C.C., Yu-Jahnes L.S., Gupta A., Shaw T., Sun J.Z., Ketchen M.B.: Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7. Phys. Rev. Lett. 73: 593–596 (1994)

    Article  ADS  Google Scholar 

  58. van Harlingen D.J.: Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors. Evidence for \({d_{x^{2}-y^{2}}}\) symmetry. Rev. Mod. Phys. 67: 515 (1995)

    Article  ADS  Google Scholar 

  59. Longobardi L., Massarotti D., Stornaiuolo D., Galletti L., Rotoli G., Lombardi F., Tafuri F.: Direct transition from quantum escape to phase diffusion regime in YBaCuO biepitaxial Josephson Junctions. Phys. Rev. Lett. 109: 050601 (2012)

    Article  ADS  Google Scholar 

  60. Massarotti D., Longobardi L., Galletti L., Stornaiuolo D., Rotoli G., Tafuri F.: Macroscopic quantum tunneling and retrapping processes in moderately damped YBaCuO Josephson Junctions. Low Temp. Phys./Fizika Nizkikh Temperatur 39: 378 (2013)

    Article  Google Scholar 

  61. Tafuri F., Massarotti D., Galletti L., Stornaiuolo D., Montemurro D., Longobardi L., Lucignano P., Rotoli G., Pepe G.P., Tagliacozzo A., Lombardi F.: Recent achievements on the physics of high-TC superconductor Josephson junctions: background, perspectives and inspiration. J. Supercond. Nov. Magn. 26: 21 (2013)

    Article  Google Scholar 

  62. Parlato, L., Arpaia, R., De Lisio, C., Miletto Granozio, F., Pepe, G.P., Perna, P., Pagliarulo, V., Bonavolont, C., Radovic, M., Wang, Y., Sobolewski, R., Scotti di Uccio, U.: Time-resolved optical response of all-oxide YBa2Cu3O7/La0.7Sr0.3MnO3 proximitized bilayers. Phys. Rev. B 87, 134514 (2013)

  63. Lombardi F., Tafuri F., Ricci F., Miletto Granozio F., Barone A., Testa G., Sarnelli E., Kirtley J.R., Tsuei C.C.: Intrinsic d-Wave effects in YBa2Cu3O7-grain boundary Josephson junctions. Phys. Rev. Lett. 89: 207001 (2002)

    Article  ADS  Google Scholar 

  64. Miletto Granozio F., Scottidi Uccio U., Lombardi F., Ricci F., Bevilacqua F., Ausanio G., Carillo F., Tafuri F.: Structure and properties of a class of CeO2-based biepitaxial YBa2Cu3O7-Josephson junctions. Phys. Rev. B 67: 184506 (2003)

    Article  ADS  Google Scholar 

  65. We have assumed a mean values for London length λ L of 300 nm, which is a value compatible with a GB angle of 20º

  66. Papari G., Carillo F., Stornaiuolo D., Longobardi L., Beltram F., Tafuri F.: High critical current density and scaling of phase-slip processes in YBaCuO nanowires. Supercond. Sci. Technol. 25: 035011 (2012)

    Article  ADS  Google Scholar 

  67. Carillo F., Papari G., Stornaiuolo D., Born D., Montemurro D., Pingue P., Beltram F., Tafuri F.: Little–Parks effect in single nanoscale YBa2Cu3O6+x rings. Phys. Rev. B 81: 054505 (2010)

    Article  ADS  Google Scholar 

  68. Nawaz S., Arpaia R., Lombardi F., Bauch T.: Microwave response of superconducting YBa2Cu3O7-nanowire bridges sustaining the critical depairing current: evidence of Josephson-like behavior. Phys. Rev. Lett. 110: 167004 (2013)

    Article  ADS  Google Scholar 

  69. Scheible D.V., Blick R.H.: Silicon nano-pillars for mechanical single electron transport. Appl. Phys. Lett. 84: 4632 (2004)

    Article  ADS  Google Scholar 

  70. Scorrano A., Carcaterra A.: Semi-classical modelling of nanomechanical transistors. Mech. Syst. Signal Process. 39: 489–514 (2013)

    Article  ADS  Google Scholar 

  71. Scorrano A., Carcaterra A.: Investigation of nanomechanical transistors. Meccanica 48(8): 1883–1892 (2013)

    Article  MATH  Google Scholar 

  72. Rosi G., Giorgio I., Eremeyev V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. ZAMM 93(12): 914–927 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  73. Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids, 1081286512474016, first published on March 4, 2013

  74. Madeo, A., Gavrilyuk, S.: Propagation of acoustic waves in porous media and their reflection and transmission at a pure-fluid/porous-medium permeable interface. Eur. J. Mech. A/Solids 29(5), 897–910

  75. Alibert J.J., Seppecher P., Dell’isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1): 51–73 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  76. Pepe G.P., Peluso G., Valentino M., Barone A., Parlato L., Esposito E., Granata C., Russo M., De Leo C., Rotoli G.: Pulse-induced switches in a Josephson tunnel stacked device. Appl. Phys. Lett. 79: 2771 (2001)

    Article  ADS  Google Scholar 

  77. Dell’Isola F., Vidoli S.: Damping of bending waves in truss beams by electrical transmission lines with PZT actuators. Arch. Appl. Mech. 68(9): 626–636 (1998)

    Article  MATH  ADS  Google Scholar 

  78. Andreaus U., Dell’isola F., Porfiri M.: Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control 10(5): 625–659 (2004)

    Article  MATH  Google Scholar 

  79. Stornaiuolo D., Rotoli G., Massarotti D., Carillo F., Longobardi L., Beltram F., Tafuri F.: Resolving the effects of frequency-dependent damping and quantum phase diffusion in YBa2Cu3O7-x Josephson junctions. Phys. Rev. B 87: 134517 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Rotoli.

Additional information

Communicated by Francesco dell'Isola and Giuseppe Piccardo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotoli, G., Stornaiuolo, D., Cedergren, K. et al. Resonant phase dynamics in 0-π Sine–Gordon facets. Continuum Mech. Thermodyn. 27, 639–658 (2015). https://doi.org/10.1007/s00161-014-0382-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0382-5

Keywords

Navigation