Continuum Mechanics and Thermodynamics

, Volume 27, Issue 1–2, pp 305–323 | Cite as

Modeling wave-induced pore pressure and effective stress in a granular seabed

  • Luc Scholtès
  • Bruno Chareyre
  • Hervé Michallet
  • Emanuele Catalano
  • Donia Marzougui
Original Article

Abstract

The response of a sandy seabed under wave loading is investigated on the basis of numerical modeling using a multi-scale approach. To that aim, the discrete element method is coupled to a finite volume method specially enhanced to describe compressible fluid flow. Both solid and fluid phase mechanics are upscaled from considerations established at the pore level. Model’s predictions are validated against poroelasticity theory and discussed in comparison with experiments where a sediment analog is subjected to wave action in a flume. Special emphasis is put on the mechanisms leading the seabed to liquefy under wave-induced pressure variation on its surface. Liquefaction is observed in both dilative and compactive regimes. It is shown that the instability can be triggered for a well-identified range of hydraulic conditions. Particularly, the results confirm that the gas content, together with the permeability of the medium are key parameters affecting the transmission of pressure inside the soil.

Keywords

Wave Liquefaction Discrete element method Hydro-mechanical coupling Compressible flow Gas content 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bagi K.: Stress and strain in granular assemblies. Mech. Mater. 22(3), 165–177 (1996)CrossRefGoogle Scholar
  2. 2.
    Bonjean, D., Foray, P., Piedra-Cueva, I., Michallet, H., Breul, P., Haddani, Y., Mory, M., Abadie, S.: Monitoring of the foundations of a coastal structure submitted to breaking waves: Occurrence of momentary liquefaction. In: Proceedings of the 14th International Offshore Polar Engeeniring Conference, Toulon, France, vol. 2, pp. 585–592 (2004)Google Scholar
  3. 3.
    Breul P., Haddani Y., Gourvès R.: On site characterization and air content evaluation of coastal soils by image analysis to estimate liquefaction risk. Can. Geotech. J. 45(12), 1723–1732 (2008)CrossRefGoogle Scholar
  4. 4.
    Catalano, E., Chareyre, B., Barthélemy, E.: Pore-scale modeling of fluid-particles interaction and emerging poromechanical effects. Int. J. Numer. Analy. Methods Geomech. (2013). doi:10.1002/nag.2198
  5. 5.
    Chareyre B., Cortis A., Catalano E., Barthélemy E.: Pore-scale modeling of viscous flow and induced forces in dense sphere packings. Transp. Porous Media 94(2), 595–615 (2012)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Cundall P., Strack O.: A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  7. 7.
    Detournay E., Cheng A.: Fundamentals of poroelasticity. In: Fairhurst, C. (ed.) Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Method. Pergamon Press (1993)Google Scholar
  8. 8.
    Drescher A., de Josselin de Jong G.: Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids 20, 337–351 (1972)ADSCrossRefGoogle Scholar
  9. 9.
    de Groot M., Bolton M., Foray P., Meijers P., Palmer A., Sandven R., Sawicki A., Teh T.: Physics of liquefaction phenomena around marine structures. J. Waterw. Port Coast. Ocean Eng. 132(4), 227–243 (2006)CrossRefGoogle Scholar
  10. 10.
    Grasso, F., Michallet, H., Barthélemy, E., Certain, R.: Physical modeling of intermediate cross-shore beach morphology: transients and equilibrium states. J. Geophys. Res. 114(C09001), (2009). doi:10.1029/2009JC005308
  11. 11.
    Hsu J., Jeng D.: Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness. Int. J. Numer. Anal. Methods Geomech. 18(11), 785–807 (1994)CrossRefMATHGoogle Scholar
  12. 12.
    Jeng D.: Mechanisms of the wave induced seabed instability in the vicinity of a breakwater: a review. Ocean Eng. 28, 537–570 (2001)CrossRefGoogle Scholar
  13. 13.
    Jeng D., Rahman M., Lee T.: Effects of inertia forces on wave-induced seabed response. Int. J. Offshore Polar Eng. 9(4), 307–313 (1999)Google Scholar
  14. 14.
    Kirca V., Sumer B., Fredsoe J.: Residual liquefaction of seabed under standing waves. J. Waterw. Port Coast. Ocean Eng. 139(6), 489–501 (2013)CrossRefGoogle Scholar
  15. 15.
    Liu, P.F., Park, Y., Lara, J.: Long-wave-induced flows in an unsaturated permeable seabed. J. Fluid Mech. 586, 323–345 (2007). doi:10.1017/S0022112007007057P
  16. 16.
    Mase H., Sakai T., Sakamoto M.: Wave-induced pore water pressure and effective stresses around breakwater. Ocean Eng. 21(4), 361–379 (1994)CrossRefGoogle Scholar
  17. 17.
    Michallet, H., Mory, M., Piedra-Cueva, I.: Wave-induced pore pressure measurements near a coastal structure. J. Geophys. Res. 114(C06019), (2009). doi:10.1029/2008JC005071
  18. 18.
    Michallet, H., Rameliarison, V., Berni, C., Bergonzoli, M., Barnoud, J.M., Barthélemy, E.: Physical modeling of sand liquefaction under wave breaking on a vertical wall. In: Proceedings of 33rd Conference on Coastal Engineering, Santander, Spain, vol. 33 (2012). doi:10.9753/icce.v33.structures.78
  19. 19.
    Mory M., Michallet H., Bonjean D., Piedra-Cueva I., Barnoud J.M., Foray P., Abadie S., Breul P.: A field study of momentary liquefaction caused by waves around a coastal structure. J. Waterw. Port Coast. Ocean Eng. 133(1), 28–38 (2007)CrossRefGoogle Scholar
  20. 20.
    Mostafa, A., Mizutani, N., Iwata, K.: Nonlinear wave, composite breakwater and seabed dynamic interaction. J. Waterw. Port Coast. Ocean Eng. 125(2), 88–97 (1999)Google Scholar
  21. 21.
    Nago H., Maeno S.: Pore pressure and effective stress in a highly saturated sand bed under water pressure variation on its surface. Nat. Disaster Sci. 1, 23–35 (1987)Google Scholar
  22. 22.
    Peregrine D.: Water-wave impact on walls. Annu. Rev. Fluid Mech. 35, 23–43 (2003)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    Pion, S., Teillaud, M.: 3d triangulations. In: CGAL Users and Reference Manual. CGAL Editiorial Board (2011)Google Scholar
  24. 24.
    Sakai T., Hatanaka K., Mase H.: Wave induced effective stress in seabed and its momentary liquefaction. J. Waterw. Port Coast. Ocean Eng. 118(2), 202–206 (1992)CrossRefGoogle Scholar
  25. 25.
    Santamarina C., Klein K., Fam M.: Soils and Waves Particulate Materials Behavior, Characterization and Process Monitoring. Wiley, New York (2001)Google Scholar
  26. 26.
    Scholtès L., Donzé F.: A DEM model for soft and hard rocks: role of grain interlocking on strength. J. Mech. Phys. Solids 61(2), 352–369 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Scholtès L., Hicher P.Y., Sibille L.: Multiscale approaches to describe mechanical responses induced by particle removal in granular materials. Comptes Rendus Mécanique 338(10-11), 627–638 (2010)ADSCrossRefMATHGoogle Scholar
  28. 28.
    Scholtès L., Nicot F., Chareyre B., Darve F.: Micromechanics of granular materials with capillary effects. Int. J. Eng. Sci. 47(1), 64–75 (2009)CrossRefMATHGoogle Scholar
  29. 29.
    Shao S.: Incompressible SPH flow model for wave interactions with porous media. Coast. Eng. 57(3), 304–316 (2010)CrossRefGoogle Scholar
  30. 30.
    Sumer, B.: Liquefaction around marine structures. In: Advanced Series on Ocean Engineering, vol. 39. World Scientific, Singapore (2014)Google Scholar
  31. 31.
    Sumer B., Ansal A., Cetin K., Damgaard J., Gunbak A., Hansen N., Sawicki A., Synolakis C., Yalciner A., Yuksel Y., Zen K.: Earthquake-induced liquefaction around marine structures. J. Waterway Port Coast. Ocean Eng. 133(1), 55–82 (2007)CrossRefGoogle Scholar
  32. 32.
    Sumer, B., Fredsøe, J.: The mechanics of scour in the marine environment. In: Advanced Series on Ocean Engineering, vol. 17. World Scientific, Singapore (2002)Google Scholar
  33. 33.
    Šmilauer, V., Catalano, E., Chareyre, B., Dorofenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtès, L., Sibille, L., Stránskỳ, J., Thoeni, K.: Yade Reference Documentation. In: Šmilauer, V. (ed.) Yade Documentation, 1st ed. The Yade Project (2010). http://yade-dem.org/doc/
  34. 34.
    Tong, A.T., Catalano, E., Chareyre, B.: Pore-scale flow simulations: model predictions compared with experiments on bi-dispersed granular assemblies. Oil Gas Sci. Technol.—Rev. IFP Energies Nouvelles (2012). doi:10.2516/ogst/2012032
  35. 35.
    Yamamoto T., Koning H., Sellmeijer H., Hijum E.V.: On the response of a poro-elastic bed to water waves. J. Fluid Mech. 87(1), 193–206 (1978)ADSCrossRefGoogle Scholar
  36. 36.
    Zen K., Yamazaki H.: Field observation and analysis of wave-induced liquefaction in seabed. Soils Found. 31(4), 161–179 (1991)CrossRefGoogle Scholar
  37. 37.
    Zhang Y., Jeng D., Gao F., Zhang J.: An analytical solution for response of a porous seabed to combined wave and current loading. Ocean Eng. 57(1), 240–247 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luc Scholtès
    • 1
  • Bruno Chareyre
    • 2
  • Hervé Michallet
    • 3
  • Emanuele Catalano
    • 2
  • Donia Marzougui
    • 2
  1. 1.Université de Lorraine/CNRS/CREGU, GeoRessourcesVandoeuvre-lès-NancyFrance
  2. 2.Université Grenoble Alpes/CNRS, 3SRGrenobleFrance
  3. 3.Université Grenoble Alpes/CNRS, LEGIGrenobleFrance

Personalised recommendations