Skip to main content

A LBM–DEM solver for fast discrete particle simulation of particle–fluid flows

Abstract

The lattice Boltzmann method (LBM) for simulating fluid phases was coupled with the discrete element method (DEM) for studying solid phases to formulate a novel solver for fast discrete particle simulation (DPS) of particle–fluid flows. The fluid hydrodynamics was obtained by solving LBM equations instead of solving the Navier–Stokes equation by the finite volume method (FVM). Interparticle and particle–wall collisions were determined by DEM. The new DPS solver was validated by simulating a three-dimensional gas–solid bubbling fluidized bed. The new solver was found to yield results faster than its FVM–DEM counterpart, with the increase in the domain-averaged gas volume fraction. Additionally, the scalability of the LBM–DEM DPS solver was superior to that of the FVM–DEM DPS solver in parallel computing. Thus, the LBM–DEM DPS solver is highly suitable for use in simulating dilute and large-scale particle–fluid flows.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Xu Y., Padding J., van der Hoef M., Kuipers J.: Detailed numerical simulation of an intruder impacting on a granular bed using a hybrid discrete particle and immersed boundary (DP–IB) method. Chem. Eng. Sci. 104, 201–207 (2013)

    Article  Google Scholar 

  2. 2

    Pepiot P., Desjardins O.: Numerical analysis of the dynamics of two- and three-dimensional fluidized bed reactors using an Euler–Lagrange approach. Powder Technol. 220, 104–121 (2012)

    Article  Google Scholar 

  3. 3

    Zhu H., Zhou Z., Yang R., Yu A.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62, 3378–3396 (2007)

    Article  Google Scholar 

  4. 4

    Zhu H., Zhou Z., Yang R., Yu A.: Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63, 5728–5770 (2008)

    Article  Google Scholar 

  5. 5

    Li T., Gopalakrishnan P., Garg R., Shahnam M.: CFD–DEM study of effect of bed thickness for bubbling fluidized beds. Particuology 10, 532–541 (2012)

    Article  Google Scholar 

  6. 6

    Wang S., Shen Y., Ma Y., Gao J., Lan X., Dong Q.: Study of hydrodynamic characteristics of particles in liquid–solid fluidized bed with uniform transverse magnetic field. Powder Technol. 245, 314–323 (2013)

    Article  Google Scholar 

  7. 7

    Capecelatro J., Desjardins O.: An Euler–Lagrange strategy for simulating particle–laden flows. J. Comput. Phys. 238, 1–31 (2013)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  8. 8

    Zhou Z., Kuang S., Chu K., Yu A.: Discrete particle simulation of particle–fluid flow: model formulations and their applicability. J. Fluid Mech. 661, 482–510 (2010)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  9. 9

    Sakai M., Abe M., Shigeto Y., Mizutani S., Takahashi H., Viré A., Percival J.R., Xiang J., Pain C.C.: Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed. Chem. Eng. J. 244, 33–43 (2014)

    Article  Google Scholar 

  10. 10

    Sun X., Sakai M., Yamada Y.: Three-dimensional simulation of a solid–liquid flow by the DEM-SPH method. J. Comput. Phys. 248, 147–176 (2013)

    MathSciNet  Article  ADS  Google Scholar 

  11. 11

    Igci Y., Andrews A.T., Sundaresan S., Pannala S., O’Brien T.: Filtered two-fluid models for fluidized gas-particle suspensions. AIChE J. 54, 1431–1448 (2008)

    Article  Google Scholar 

  12. 12

    Zhang, Y., Bo, Y., Wu, Y., Wu, X., Huang, Z., Zhou, J., Cen, K.: Flow behavior of high-temperature flue gas in the heat transfer chamber of a pilot-scale coal-water slurry combustion furnace. Particuology (2013) (in press)

  13. 13

    Wang S., Liu G., Lu H., Yang Y., Xu P., Sun L.: Computational fluid dynamics of riser using kinetic theory of rough spheres. Powder Technol. 228, 56–68 (2012)

    Article  Google Scholar 

  14. 14

    Chen S., Doolen G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    MathSciNet  Article  ADS  Google Scholar 

  15. 15

    Zhou H., Mo G., Wu F., Zhao J., Rui M., Cen K.: GPU implementation of lattice Boltzmann method for flows with curved boundaries. Comput. Methods Appl. Mech. Eng. 225, 65–73 (2012)

    MathSciNet  Article  Google Scholar 

  16. 16

    Janßen C., Krafczyk M.: Free surface flow simulations on GPGPUs using the LBM. Comput. Math. Appl. 61, 3549–3563 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17

    Yin X., Zenk J.R., Mitrano P.P., Hrenya C.M.: Impact of collisional versus viscous dissipation on flow instabilities in gas–solid systems. J. Fluid Mech. 727, R2 (2013)

    Article  ADS  Google Scholar 

  18. 18

    Xiong Q., Li B., Zhou G., Fang X., Xu J., Wang J., He X., Wang X., Wang L., Ge W., Li J.: Large-scale DNS of gas–solid flows on Mole-8.5. Chem. Eng. Sci. 71, 422–430 (2012)

    Article  Google Scholar 

  19. 19

    Xiong Q., Li B., Xu J., Wang X., Wang L., Ge W.: Efficient 3D DNS of gas–solid flows on Fermi GPGPU. Comput. Fluids 70, 86–94 (2012)

    Article  Google Scholar 

  20. 20

    Ladd A.J.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285–309 (1994)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  21. 21

    Ladd A.J.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311–339 (1994)

    MathSciNet  Article  ADS  Google Scholar 

  22. 22

    Wang T., Wang J.: Two-fluid model based on the lattice Boltzmann equation. Phys. Rev. E 71, 045301 (2005)

    Article  ADS  Google Scholar 

  23. 23

    Sankaranarayanan K., Sundaresan S.: Lattice Boltzmann simulation of two-fluid model equations. Ind. Eng. Chem. Res. 47, 9165–9173 (2008)

    Article  Google Scholar 

  24. 24

    Luo L.-S., Girimaji S.S.: Lattice Boltzmann model for binary mixtures. Phys. Rev. E 66, 035301 (2002)

    Article  ADS  Google Scholar 

  25. 25

    Luo L.-S., Girimaji S.S.: Theory of the lattice Boltzmann method: two-fluid model for binary mixtures. Phys. Rev. E 67, 036302 (2003)

    Article  ADS  Google Scholar 

  26. 26

    Sungkorn R., Derksen J.J.: Simulations of dilute sedimenting suspensions at finite-particle Reynolds numbers. Phys. Fluids 24, 123303 (2012)

    Article  ADS  Google Scholar 

  27. 27

    Song F., Wang W., Li J.: A lattice Boltzmann method for particle–fluid two-phase flow. Chem. Eng. Sci. 102, 442–450 (2013)

    Article  Google Scholar 

  28. 28

    Cundall P.A., Strack O.D.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  29. 29

    Qian Y., d’Humières D., Lallemand P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1992)

    Article  MATH  ADS  Google Scholar 

  30. 30

    Guo Z., Zheng C., Shi B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308 (2002)

    Article  ADS  Google Scholar 

  31. 31

    Wang J., van der Hoef M.A., Kuipers J.A.M.: CFD study of the minimum bubbling velocity of Geldart A particles in gas-fluidized beds. Chem. Eng. Sci. 65, 3772–3785 (2010)

    Article  Google Scholar 

  32. 32

    Gidaspow D.: Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Elsevier, Amsterdam (1994)

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giulio Lorenzini.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiong, Q., Madadi-Kandjani, E. & Lorenzini, G. A LBM–DEM solver for fast discrete particle simulation of particle–fluid flows. Continuum Mech. Thermodyn. 26, 907–917 (2014). https://doi.org/10.1007/s00161-014-0351-z

Download citation

Keywords

  • Lattice Boltzmann method
  • Discrete element method
  • Discrete particle simulation
  • Particle–fluid flows