Skip to main content
Log in

Nonaxisymmetric electroelastic vibrations of a hollow sphere made of functionally gradient piezoelectric material

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The nonaxisymmetric problem of natural vibrations of a hollow sphere made of functionally gradient piezoelectric material is solved based on 3D electroelasticity. The properties of the material change continuously along a radial coordinate according to an exponential law. The external surface of the sphere is free of tractions and either insulated or short-circuited by electrodes. After separation of variables and representation of the components of the displacements and of the stress tensor in terms of spherical functions, the initially three-dimensional problem is reduced to a boundary-value problem for the eigenvalues expressed by ordinary differential equations. This problem is solved by a stable discrete-orthogonalization technique in combination with a step-by-step search method with respect to the radial coordinate. Moreover, a numerical investigation is performed based on the algorithm used for solving the problem. In particular, we investigate the influence of the geometric and electric parameters on the frequency spectrum at the nonaxisymmetry of natural vibrations of an inhomogeneous piezoceramic thick-walled sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey T., Hubbard E.: Modeling and analysis of functionally graded materials and structures. J. Guid. Control. Dyn. 8(5), 605–611 (1985)

    Article  MATH  ADS  Google Scholar 

  2. Baz A., Poh S.: Performance on an active control system with piezoelectric actuators. J. Sound. Vib. 126(2), 327–343 (1988)

    Article  ADS  Google Scholar 

  3. Berlincourt, D.: Piezoelectric crystals and ceramics. In: Mattiat, O.E. (ed.) Ultrasonic Transducer Materials. Plenum Press, New York, ch. 2, pp. 62–124 (1971)

  4. Birman V., Byrd L.W.: Modeling and analysis of functionally graded materials and structures. ASME Appl. Mech. Rev. 60, 195–216 (2007)

    Article  ADS  Google Scholar 

  5. Boriseiko V.A., Grinchenko V.T., Ulitko A.F.: Relations of electroelasticity for piezoceramic shells of revolution. Sov. Appl. Mech. 12(2), 126–131 (1971)

    Article  ADS  Google Scholar 

  6. Chen W.T.: On some problems in spherically isotropic elastic materials. Trans. ASME Ser. E 33(3), 347–355 (1966)

    Article  MATH  Google Scholar 

  7. Chen W.Q., Ding H.J.: On free vibrations of a functionally graded piezoelectric rectangular plate. Acta Mech. 153, 207–216 (2002)

    Article  MATH  Google Scholar 

  8. Chen W.Q., Wang L.Z., Lu Y.: Free vibrations of functionally graded piezoceramic hollow spheres with radial polarization. J. Sound Vib. 251(1), 103–114 (2002)

    Article  ADS  Google Scholar 

  9. Chen W.Q., Lu Y., Ye J.R., Cai J.B.: 3D electroelastic fields in a functionally graded piezoceramic hollow sphere under mechanical and electric loading. Arch. Appl. Mech. 72, 39–51 (2002)

    Article  MATH  ADS  Google Scholar 

  10. Chree C.: On the longitudinal vibrations of aeolotropic bars with one axis of material symmetry. Q. J. Math. 24, 340–358 (1890)

    MATH  Google Scholar 

  11. Crawly, E.F., de Luis, J.: Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25(10), 1373–1385 (1987)

    Google Scholar 

  12. Dai H.L., Wang X.: Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation. Struct. Eng. Mech. 19(4), 441–457 (2005)

    Article  Google Scholar 

  13. Dai H.L., Fu Y.M., Yang J.H.: Electromagnetoelastic behaviors of functionally graded piezoelectric solid cylinder and sphere. Acta Mech. Sinica 23, 55–63 (2007)

    Article  MATH  ADS  Google Scholar 

  14. Grigorenko, Ya.M., Vasilenko, A.T, Pankratova, N.D.: Statics of Anisotropic Shells. Kiev, Vyshch. Shkola (in Russian) (1985)

  15. Grigorenko, Ya.M., Grigorenko, A.Ya., Vlaikov, G.G.: Problems of Mechanics for Anisotropic Inhomogeneous Shells on Basic of Different Models. Kiev, Akademperiodika, p. 549 (2009)

  16. Grigorenko A., Müller W.H., Wille R., Yaremchenko S.: Numerical solution of stress-strain state in hollow cylinder by Means of spline approximation. J. Math. Sci. 180(2), 135–145 (2012a)

    Article  MathSciNet  Google Scholar 

  17. Grigorenko A., Müller W.H., Wille R., Loza I.: Nonaxisymmetric vibrations of radially polarized hollow cylinders made of functionally gradient piezoelectric materials. Continuum Mech. Thermodyn. 24(4-6), 515–524 (2012b)

    Article  MATH  ADS  Google Scholar 

  18. Jaerisch P.: Über die elastischen Schwingungen einer isotropen Kugel. J. Math. (Crelle) 88, 131–145 (1880)

    Google Scholar 

  19. Lamb H.: On the vibration of an elastic sphere. Proc. Lond. Math. Soc. 13, 189–212 (1882)

    MathSciNet  MATH  Google Scholar 

  20. Love, A.E.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, reprint in USA (1952)

  21. Loza I.A.: Nonaxisymmetric vibrations of hollow inhomogeneous sphere with piezoceramic layers. Rep. NAN Ukraine (in Russian) 11, 137–143 (2011)

    Google Scholar 

  22. Loza I.A., Shul’ga N.A.: Axisymmetric vibrations of a hollow piezoceramic sphere with radial polarization. Int. Appl. Mech. 20(2), 113–117 (1984)

    ADS  Google Scholar 

  23. Loza I.A., Shul’ga N.A.: Forced axisymmetric vibrations of a hollow piezoceramic sphere with an electrical method of excitation. Int. Appl. Mech. 26(6), 818–821 (1990)

    MATH  ADS  Google Scholar 

  24. Morse F.M., Feshbach G.: Methods of Theoretical Physics. McCraw-Hill, NY (1953)

    MATH  Google Scholar 

  25. Petrashen’ G.I.: Vibrations of an isotropic elastic sphere. Dokl. Akad. Nauk SSSR (in Russian) 47(3), 177–181 (1947)

    Google Scholar 

  26. Poisson, S.D.: Memoire sur l’equilibre et le movement des corps elastique. L’Académie Royale des Sciences, VIII, pp. 357–570 (1829)

  27. Sato Y., Usami T.: Basic study on the oscillation on a homogeneous elastic sphere. Geophys. Mag. Tokyo 31, 15–62 (1962)

    Google Scholar 

  28. Shul’ga N.A.: Electroelastic oscillations of a piezoceramic sphere with radial polarization. Int. Appl. Mech. 22(5), 497–500 (1986)

    Google Scholar 

  29. Shul’ga N.A., Grigorenko A.Ya., Efimova T.L.: Free non-axisymmetric oscillations of a thick-walled nonhomogeneous transversally isotropic hollow sphere. Int. Appl. Mech. 24(5), 439–444 (1988)

    MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Grigorenko.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorenko, A.Y., Müller, W.H., Wille, R. et al. Nonaxisymmetric electroelastic vibrations of a hollow sphere made of functionally gradient piezoelectric material. Continuum Mech. Thermodyn. 26, 771–781 (2014). https://doi.org/10.1007/s00161-014-0337-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0337-x

Keywords

Navigation