Skip to main content
Log in

A viscoplastic approach to the behaviour of fluidized geomaterials with application to fast landslides

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper deals with modelling of landslide propagation. Its purpose is to present a methodology of analysis based on mathematical, constitutive and numerical modelling, which includes both well-established theories together with some improvements which are proposed herein. Concerning the mathematical model, it is based on Biot–Zienkiewicz equations, from where a depth-integrated model is developed. The main contribution here is to combine a depth-integrated description of the soil–pore fluid mixture together with a set of 1D models dealing with pore pressure evolution within the soil mass. In this way, pore pressure changes caused by vertical consolidation, changes of total stresses resulting from height variations and changes of basal surface permeability can be taken into account with more precision. Most of rheological models used in depth-integrated models are derived either heuristically (the case of Voellmy model, for instance), or from general 3D rheological models. Here, we will propose an alternative way, based on Perzyna’s viscoplasticity. The approach followed for numerical modelling is the SPH method, which we have enriched adding a 1D finite difference grid to each SPH node, in order to improve the description of pore water profiles in the avalanching soil. This paper intends to be a homage to Professor Felix Darve, who has very much contributed to the field of modern geomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sulem J., Vardoulakis I.G.: Bifurcation Analysis in Geomechanics. Taylor & Francis, London (1995)

    Google Scholar 

  2. Laouafa F., Darve F.: Modelling of slope failure by a material instability mechanism. Comput. Geotech. 29, 301–325 (2002)

    Article  Google Scholar 

  3. Saint-Venant A.: Theorie du mouvement non permanent des eaux, avec application aux crues des rivieres et a l’introduction de marees dans leurs lits. Comptes-Rendus l’Académie des Sci. 73, 147–273 (1871)

    MATH  Google Scholar 

  4. Savage S.B., Hutter K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Iverson R.M., Denlinger R.P.: Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J. Geophys. Res. 106, 537 (2001)

    Article  ADS  Google Scholar 

  6. Hutter K., Koch T.: Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 334, 93–138 (1991)

    Article  ADS  Google Scholar 

  7. Naaim, M., Vial, S., Couture, R.: St Venant approach for rock avalanches modelling in multiple scale analyses and coupled physical systems (1997)

  8. Laigle D., Coussot P.: Numerical modeling of mudflows. J. Hydraul. Eng. 123, 617–623 (1997)

    Article  Google Scholar 

  9. Pitman E.B., Le L.: A two-fluid model for avalanche and debris flows. Philos. Trans. A. Math. Phys. Eng. Sci. 363, 1573–601 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. McDougall S., Hungr O.: A model for the analysis of rapid landslide motion across three-dimensional terrain. Can. Geotech. J. 41, 1084–1097 (2004)

    Article  Google Scholar 

  11. Rodriguez-Paz M., Bonet J.: A corrected smooth particle hydrodynamics formulation of the shallow–water equations. Comput. Struct. 83, 1396–1410 (2005)

    Article  MathSciNet  Google Scholar 

  12. Mangeney-Castelnau A.: Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme. J. Geophys. Res. 108, 2527 (2003)

    Article  ADS  Google Scholar 

  13. Lajeunesse E., Mangeney-Castelnau A., Vilotte J.P.: Spreading of a granular mass on a horizontal plane. Phys. Fluids. 16, 2371 (2004)

    Article  ADS  Google Scholar 

  14. Pastor M., Blanc T., Pastor M.J.: A depth-integrated viscoplastic model for dilatant saturated cohesive-frictional fluidized mixtures: Application to fast catastrophic landslides. J. Nonnewton. Fluid Mech. 158, 142–153 (2009)

    Article  MATH  Google Scholar 

  15. Pastor M., Quecedo M., Fernández Merodo J.A., Herreros M.I., Gonzalez E., Mira P.: Modelling tailings dams and mine waste dumps failures. Géotechnique 52, 579–591 (2002)

    Article  Google Scholar 

  16. Hutchinson J.N.: A sliding–consolidation model for flow slides. Can. Geotech. J. 23, 115–126 (1986)

    Article  Google Scholar 

  17. Quecedo M., Pastor M., Herreros M.I., Fernández Merodo J.A.: Numerical modelling of the propagation of fast landslides using the finite element method. Int. J. Numer. Methods Eng. 59, 755–794 (2004)

    Article  MATH  Google Scholar 

  18. Major J.J., Iverson R.M.: Debris-flow deposition: Effects of pore–fluid pressure and friction concentrated at flow margins. Geol. Soc. Am. Bull. 111, 1424–1434 (1999)

    Article  ADS  Google Scholar 

  19. Iverson R.M.: Regulation of landslide motion by dilatancy and pore pressure feedback. J. Geophys. Res. 110, F02015 (2005)

    ADS  Google Scholar 

  20. Pudasaini S.P.: A general two-phase debris flow model. J. Geophys. Res. 117, F03010 (2012)

    ADS  Google Scholar 

  21. Okada Y., Sassa K., Fukuoka H.: Excess pore pressure and grain crushing of sands by means of undrained and naturally drained ring-shear tests. Eng. Geol. 75, 325–343 (2004)

    Article  Google Scholar 

  22. Iverson R.I.: Landslide triggering by rain infiltration. Water Resour. Res. 36, 1897–1910 (2000)

    Article  ADS  Google Scholar 

  23. Pailha M., Nicolas M., Pouliquen O.: Initiation of underwater granular avalanches: influence of the initial volume fraction. Phys. Fluids. 20, 111701 (2008)

    Article  ADS  Google Scholar 

  24. Igwe, O., Sassa, K., Fukuoka, H.: Excess pore water pressure: a major factor for catastrophic landslides. In: The 10th IAEG International Congress. Nottingham, UK (2006)

  25. Bowen, R.M.: Theory of mixtures, part I. In: Eringen, A.C. (ed.) Continuum Physics: mixtures and EM field theories, vol. III, pp. 2–122 (1976)

  26. De Boer R.: Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory. Appl. Mech. Rev. 49, 201 (1996)

    Article  ADS  Google Scholar 

  27. Biot M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155 (1941)

    Article  ADS  MATH  Google Scholar 

  28. Biot M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182 (1955)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Zienkiewicz O.C., Shiomi T.: Dynamic behaviour of saturated porous media; The generalized Biot formulation and its numerical solution. Int. J. Numer. Anal. Methods Geomech. 8, 71–96 (1984)

    Article  MATH  Google Scholar 

  30. Zienkiewicz O.C., Chan A.H.C., Pastor M., Paul D.K., Shiomi T.: Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I. Fully saturated problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 429, 285–309 (1990)

    Article  ADS  MATH  Google Scholar 

  31. Zienkiewicz O.C., Xie Y.M., Schrefler B.A., Ledesma A., Bicanic N.: Static and dynamic behaviour of soils: a rational approach to quantitative solutions. II. Semi-saturated problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 429, 311–321 (1990)

    Article  ADS  MATH  Google Scholar 

  32. Zienkiewicz O.C., Chan A.H.C., Pastor M., Schrefler B.A., Shiomi T.: Computational Geomechanics. Wiley, London (1999)

    MATH  Google Scholar 

  33. Lewis, R.W., Schrefler, B.A.: The finite element method in the static and dynamic deformation and consolidation of porous media (1998)

  34. Coussy, O.: Mechanics of Porous Continua. Wiley, Chichester (1995)

  35. De Boer R.: Trends in Continuum Mechanics of Porous Media. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  36. Pastor M., Haddad B., Sorbino G., Cuomo S., Drempetic V.: A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int. J. Numer. Anal. Methods Geomech. 33, 143–172 (2009)

    Article  MATH  Google Scholar 

  37. Gray J.M.N.T., Thornton A.R.: A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. A Math. Phys. Eng. Sci. 461, 1447–1473 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Gray J.M.N.T., Ancey C.: Multi-component particle-size segregation in shallow granular avalanches. J. Fluid Mech. 678, 535–588 (2011)

    Article  MATH  Google Scholar 

  39. Fernández-Merodo, J.A., García-Davalillo, J.C., Herrera, G., Mira, P., Pastor, M.: 2D viscoplastic finite element modelling of slow landslides: the Portalet case study (Spain). Landslides (2012)

  40. Crosta G.B., Imposimato S., Roddeman D.: Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng. Geol. 109, 135–145 (2009)

    Article  Google Scholar 

  41. Alonso E.E., Zabala F.: Progressive failure of Aznalcóllar dam using the material point method. Géotechnique 61, 795–808 (2011)

    Article  Google Scholar 

  42. Blanc T., Pastor M.: A stabilized fractional step, Runge–Kutta Taylor SPH algorithm for coupled problems in geomechanics. Comput. Methods Appl. Mech. Eng. 221(222), 41–53 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  43. Blanc T., Pastor M.: A stabilized Runge–Kutta, Taylor smoothed particle hydrodynamics algorithm for large deformation problems in dynamics. Int. J. Numer. Methods Eng. 91, 1427–1458 (2012)

    Article  MathSciNet  Google Scholar 

  44. Bui H.H., Sako K., Fukagawa R.: Numerical simulation of soil–water interaction using smoothed particle hydrodynamics (SPH) method. J. Terramechanics 44, 339–346 (2007)

    Article  Google Scholar 

  45. Bui H.H., Fukagawa R., Sako K., Ohno S.: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Int. J. Numer. Anal. Methods Geomech. 32, 1537–1570 (2008)

    Article  MATH  Google Scholar 

  46. Jassim I., Stolle D., Vermeer P.: Two-phase dynamic analysis by material point method. Int. J. Numer. Anal. Methods Geomech. 37, 2502–2522 (2013)

    Article  Google Scholar 

  47. Moresi L., Dufour F., Mühlhaus H.-B.: A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. J. Comput. Phys. 184, 476–497 (2003)

    Article  ADS  MATH  Google Scholar 

  48. Savage S.B., Hutter K.: The dynamics of avalanches of granular materials from initiation to runout. Part I Anal. Acta Mech. 86, 201–223 (1991)

    MATH  MathSciNet  Google Scholar 

  49. Hutter K., Siegel M., Savage S.B., Nohguchi Y.: Two-dimensional spreading of a granular avalanche down an inclined plane Part I. Theory. Acta Mech. 100, 37–68 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  50. Gray J.M.N.T., Wieland M., Hutter K.: Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. A Math. Phys. Eng. Sci. 455, 1841–1874 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Pudasaini, S.P., Hutter, K.: Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches (2007)

  52. Iverson R.I.: The physics of debris flows. Rev. Geophys. 35, 245–296 (1997)

    Article  ADS  Google Scholar 

  53. Wang Y., Hutter K.: A constitutive theory of fluid-saturated granular materials and its application in gravitational flows. Rheol. Acta. 38, 214–223 (1999)

    Article  Google Scholar 

  54. Bingham E.C.: Fluidity and Plasticity. McGraw-Hill, New York (1922)

    Google Scholar 

  55. Hohenemser K., Prager W.: Über die Ansätze der Mechanik isotroper Kontinua. ZAMM—Zeitschrift für Angew. Math. und Mech. 12, 216–226 (1932)

    Article  Google Scholar 

  56. Oldroyd J.G., Wilson A.H.: A rational formulation of the equations of plastic flow for a Bingham solid. Math. Proc. Camb. Philos. Soc. 43, 100 (2008)

    Article  ADS  Google Scholar 

  57. Malvern L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice Hall, Englewood Cliffs (1969)

    Google Scholar 

  58. Coussot P.: Steady, laminar, flow of concentrated mud suspensions in open channel. J. Hydraul. Res. 32, 535–559 (1994)

    Article  Google Scholar 

  59. Coussot P.: Mudflow Rheology and Dynamics. Balkema, Amsterdam (1997)

    MATH  Google Scholar 

  60. Coussot P.: Rheometry of Pastes, Suspensions and Granular Matter. Wiley, London (2005)

    Book  Google Scholar 

  61. Dent, J.D., Lang, T.E.: A biviscous modified bingham model of snow avalanche in motion. Ann. Glaciol. 4, 42–46 (1983)

    Google Scholar 

  62. Locat, J.: Normalized rheological behaviour of fine muds and their flow properties in a pseudoplastic regime. In: International Conference on Debris-Flow Hazard Mitigation: Prediction and Assessment. New York, pp. 260–269 (1997)

  63. Chen J.K., Beraun J.E., Carney T.C.: A corrective smoothed particle method for boundary value problems in heat conduction. Int. J. Numer. Methods Eng. 46, 231–252 (1999)

    Article  MATH  Google Scholar 

  64. Chen C., Ling C.-H.: Granular-flow rheology: role of shear-rate number in transition regime. J. Eng. Mech. 122, 469–480 (1996)

    Article  Google Scholar 

  65. Forterre Y., Pouliquen O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  66. Pailha M., Pouliquen O.: A two-phase flow description of the initiation of underwater granular avalanches. J. Fluid Mech. 633, 115 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  67. Crosta G.B., Frattini P., Fusi N.: Fragmentation in the Val Pola rock avalanche, Italian Alps. J. Geophys. Res. 112, F01006 (2007)

    ADS  Google Scholar 

  68. Gray J.M.N.T., Ancey C.: Segregation, recirculation and deposition of coarse particles near two-dimensional avalanche fronts. J. Fluid Mech. 629, 387 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  69. Johnson C.G., Kokelaar B.P., Iverson R.M., Logan M., LaHusen R.G., Gray J.M.N.T.: Grain-size segregation and levee formation in geophysical mass flows. J. Geophys. Res. 117, F01032 (2012)

    ADS  Google Scholar 

  70. Astarita G., Marucci G.: Principles of Non-newtonian Fluid Mechanics. McGraw-Hill, New York (1974)

    Google Scholar 

  71. Bagnold R.A.: Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proc. R. Soc. A Math. Phys. Eng. Sci. 225, 49–63 (1954)

    Article  ADS  Google Scholar 

  72. Pouliquen O., Cassar C., Jop P., Forterre Y., Nicolas M.: Flow of dense granular material: towards simple constitutive laws. J. Stat. Mech. Theory Exp. 2006, P07020–P07020 (2006)

    Article  Google Scholar 

  73. Jop P., Forterre Y., Pouliquen O.: A constitutive law for dense granular flows. Nature 441, 727–30 (2006)

    Article  ADS  Google Scholar 

  74. George, D.L., Iverson, R.I.: A two phase debris flow model that includes coupled evolution of volume fractions, granular dilatancy and pore fluid pressure. In: 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Roma, pp. 415–424 (2011)

  75. Voellmy, A.: Über die Zerstörungskraft von Lawinen. (1955)

  76. Parry R.H.G.: Triaxial compression and extension tests on remoulded saturated clay. Géotechnique 10, 166–180 (1960)

    Article  Google Scholar 

  77. Hanes D.M., Inman D.L.: Observations of rapidly flowing granular-fluid materials. J. Fluid Mech. 150, 357 (2006)

    Article  ADS  Google Scholar 

  78. MIDI G.R.: On dense granular flows. Eur. Phys. J. E. Soft Matter. 14, 341–65 (2004)

    Article  Google Scholar 

  79. Roux, S., Radjai, F.: Texture-dependent rigid-plastic behavior. Phys. Dry Granul. Media 350, 229–236 (1998)

    Google Scholar 

  80. Perzyna P.: The constitutive equations for rate sensitive plastic materials. Q. Appl. Math. 20, 321–332 (1963)

    MATH  MathSciNet  Google Scholar 

  81. Sluys, L.J., de Borst, R.: Wave propagation in strain softening plasticity. In: Modern Approaches to Plasticity, pp. 411–447 (1993)

  82. Sluys, L.J.: Wave propagation, localization and dispersion in softening solids (1992)

  83. Duvant, J., Lion, J.L.: Les inéquations en mécanique et en physique. Dunod (1972)

  84. Winnicki A., Pearce C.J., Bićanić N.: Viscoplastic Hoffman consistency model for concrete. Comput. Struct. 79, 7–19 (2001)

    Article  Google Scholar 

  85. Heeres O.M., Suiker A.S.J., de Borst R.: A comparison between the Perzyna viscoplastic model and the Consistency viscoplastic model. Eur. J. Mech. A/Solids. 21, 1–12 (2002)

    Article  ADS  MATH  Google Scholar 

  86. Zienkiewicz O.C., Cormeau I.C.: Visco-plasticity–plasticity and creep in elastic solids—a unified numerical solution approach. Int. J. Numer. Methods Eng. 8, 821–845 (1974)

    Article  MATH  Google Scholar 

  87. Adachi T., Oka F.: Constitutive equations for normally consolidated clays based on elasto viscoplasticity. Soils Found. 22, 57–70 (1982)

    Article  Google Scholar 

  88. Desai C.S., Zhang D.: Viscoplastic model for geologic materials with generalized flow rule. Int. J. Numer. Anal. methods Geomech. 11, 603–620 (1987)

    Article  MATH  Google Scholar 

  89. Vulliet L., Hutter K.: Continuum model for natural slopes in slow movement. Géotechnique 38, 199–217 (1988)

    Article  Google Scholar 

  90. Ledesma, A., Olivella, S.: Creep of slopes controlled by rainfall: coupling viscoplasticity and unsaturated soil behaviour. In: Proceedings of the 1st Intenational Workshop on New Frontiers in Computational Geotechnics—IWS, pp. 91–98 (2002)

  91. Perzyna P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966)

    Article  Google Scholar 

  92. Di Prisco C., Pisanò F.: An exercise on slope stability and perfect elastoplasticity. Géotechnique 61, 923–934 (2011)

    Article  Google Scholar 

  93. Di Prisco C., Pastor M., Pisanò F.: Shear wave propagation along infinite slopes: a theoretically based numerical study. Int. J. Numer. Anal. Methods Geomech. 36, 619–642 (2012)

    Article  Google Scholar 

  94. Pisanò F., Pastor M.: 1D wave propagation in saturated viscous geomaterials: Improvement and validation of a fractional step Taylor–Galerkin finite element algorithm. Comput. Methods Appl. Mech. Eng. 200, 3341–3357 (2011)

    Article  ADS  MATH  Google Scholar 

  95. Herreros M.I., Mabssout M., Pastor M.: An eulerian mixed formulation for viscoplastic materials. Comput. Methods Appl. Mech. Eng. 196, 1924–1932 (2007)

    Article  ADS  MATH  Google Scholar 

  96. Mabssout M., Pastor M.: A Taylor–Galerkin algorithm for shock wave propagation and strain localization failure of viscoplastic continua. Comput. Methods Appl. Mech. Eng. 192, 955–971 (2003)

    Article  ADS  MATH  Google Scholar 

  97. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

    Google Scholar 

  98. Lucy L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013 (1977)

    Article  ADS  Google Scholar 

  99. Liu, G.-R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. Word Scientific, Singapore (2003)

  100. Morris, J.P.: Analysis of Smoothed Particle Hydrodynamics with Applications. Monash University, Melbourne (1996)

  101. Monaghan J.J., Kocharyan A.: SPH simulation of multi-phase flow. Comput. Phys. Commun. 87, 225–235 (1995)

    Article  ADS  MATH  Google Scholar 

  102. Takeda H., Miyama S.M., Sekiya M.: Numerical simulation of viscous flow by smoothed particle hydrodynamics. Prog. Theor. Phys. 92, 939–960 (1994)

    Article  ADS  Google Scholar 

  103. Monaghan J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)

    Article  ADS  MATH  Google Scholar 

  104. Morris J.P., Fox P.J., Zhu Y.: Modeling low reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214–226 (1997)

    Article  ADS  MATH  Google Scholar 

  105. Zhu Y., Fox P.J.: Smoothed particle hydrodynamics model for diffusion through porous media. Transp. Porous Media. 43, 441–471 (2001)

    Article  Google Scholar 

  106. Bonet J., Kulasegaram S.: Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int. J. Numer. Methods Eng. 47, 1189–1214 (2000)

    Article  MATH  Google Scholar 

  107. Randles P.W., Libersky L.D.: Normalized SPH with stress points. Int. J. Numer. Methods Eng. 48, 1445–1462 (2000)

    Article  MATH  Google Scholar 

  108. Gray J.P., Monaghan J.J., Swift R.P.: SPH elastic dynamics. Comput. Methods Appl. Mech. Eng. 190, 6641–6662 (2004)

    Article  Google Scholar 

  109. McDougall, S.: A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain (2006)

  110. Antoci C., Gallati M., Sibilla S.: Numerical simulation of fluid–structure interaction by SPH. Comput. Struct. 85, 879–890 (2007)

    Article  Google Scholar 

  111. De Leffe, M., Le Touze, D., Alessandrini, B.: Coastal flow simulations using an SPH formulation modelling the non-linear shallow water equations. In: 3rd ERCOFTAC SPHERIC Workshop on SPH Applications. Lausanne, pp. 48–54 (2008)

  112. Vacondio R., Rogers B.D., Stansby P.K., Mignosa P.: SPH modeling of shallow flow with open boundaries for practical flood simulation. J. Hydraul. Eng. 138, 530–541 (2012)

    Article  Google Scholar 

  113. Dyka C.T., Randles P.W., Ingel R.P.: Stress points for tension instability in SPH. Int. J. Numer. Methods Eng. 40, 2325–2341 (1997)

    Article  MATH  Google Scholar 

  114. Dyka C.T., Ingel R.P.: An approach for tension instability in smoothed particle hydrodynamics (SPH). Comput. Struct. 57, 573–580 (1995)

    Article  MATH  Google Scholar 

  115. Swegle J.W., Hicks D.L., Attaway S.W.: Smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 116, 123–134 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  116. Blanc T., Pastor M.: A stabilized smoothed particle hydrodynamics, Taylor–Galerkin algorithm for soil dynamics problems. Int. J. Numer. Anal. Methods Geomech. 37, 1–30 (2013)

    Article  Google Scholar 

  117. Cruden D.M., Hungr O.: The debris of the Frank Slide and theories of rockslide–avalanche mobility. Can. J. Earth Sci. 23, 425–432 (1986)

    Article  ADS  Google Scholar 

  118. King, J.P.: The 2000 Tsing Shan Debris Flow. In: The Government of the Hong Kong Special Administrative Region (ed.) Tsing Shan debris flow and debris flood. Geo Report No. 281. Hong Kong, p. 265 (2001)

  119. Jeyapalan J.K., Duncan J.M., Seed H.B.: Investigation of flow failures of tailings dams. J. Geotech. Eng. 109, 172–189 (1983)

    Article  Google Scholar 

  120. Hutchinson, J.N.: Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. General report. In: 5th International Symposium on Landslides, Lausanne, pp. 3–35 (1988)

  121. McConnell, R.G., Brock, R.W.: The great landslide at Frank, Alberta. Annual Report for the year 1902–1903, Part VIII (1904)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pastor.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastor, M., Martin Stickle, M., Dutto, P. et al. A viscoplastic approach to the behaviour of fluidized geomaterials with application to fast landslides. Continuum Mech. Thermodyn. 27, 21–47 (2015). https://doi.org/10.1007/s00161-013-0326-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-013-0326-5

Keywords

Navigation