Skip to main content
Log in

On the lower-order theories of continua with application to incremental motions, stability and vibrations of rods

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The relative merit of lower-order theories, which have been deduced from the three-dimensional theories of continua, is evaluated with respect to the quantified and un-quantified errors in mathematically modeling the physical response of structural elements. Then, the one-dimensional theories are derived with high accuracy, internal consistency and flexibility from the three-dimensional theory of elasticity in order to govern the nonlinear and incremental motions and stability of a functionally graded rod. First, a kinematic-based method of separation of variables is introduced as a method of reduction, which may lead to the lower-order theories with the same order of errors of the three-dimensional theories, and the nonlinear theories of the rod are derived under Leibnitz’s postulate of structural elements by use of Hamilton’s principle. A theorem of uniqueness is proved in solutions of the linear equations of the rod by means of the logarithmic convexity argument. Next, the kinematic basis is expressed by the power series expansion in the cross-sectional coordinates using Weierstrass’s theorem. Mindlin’s method is used so as to derive the equations in an invariant and fully variational form for the small motions superposed on a static finite deformation, the stability analysis and the high-frequency vibrations of the rod. Moreover, the free vibrations of the rod are considered, the basic properties of eigenvalues are examined, and Rayleigh’s quotient is obtained. The invariant equations of the rod, which are expressible in any system of orthogonal coordinates, may provide simultaneous approximations on all the field variables in a direct method of solutions. The equations are indicated to contain some of earlier equations of rods, as special cases, and also, the numerical elasticity solution of a sample application is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Euler, L.: De curvis elasticis (“Elastic Curves”) : additamentum I to his methodus inveniendi lineas curvas maximi minimive proprietate gaudentes. Lausanne=Opera Omnia I 24, 231–297 (1744) (in Latin)

  2. Love A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover Publications, New York (1944)

    MATH  Google Scholar 

  3. Von Karman, T.: Festigkeitsprobleme in Maschinenbau. In: Encyclopadie der Mathematischen Wissenschaften, vol. IV/4, pp. 311–385. Teubner, Leipzig (1910); see also, Ebene platen, In: Collected Works of Theodore von Karman, vol. 1, 1902–1913, pp. 176–178. Butterworths Scientific Publications, London (1956)

  4. Von Karman, T.: Engineer grapples with nonlinear problems (15th Josiah Willard Gibbs lecture. Am. Math. Soc. 1939). Bull. Am. Math. Soc. 46, 615–683 (1940)

  5. Antman S.S.: The theory of rods. In: Truesdell, C. (eds) Handbuch der Physik, Bd.VIa/2, pp. 641–703. Springer, Berlin (1972)

    Google Scholar 

  6. Villagio P.: Mathematical Models for Elastic Structures. Cambridge University Press, New York (1997)

    Google Scholar 

  7. Altay G., Dökmeci M.C.: Some comments on the higher order theories of piezoelectric, piezothermoelastic and thermopiezoelectric rods and shells. Int. J. Solids Struct. 40, 4699–4706 (2003)

    MATH  Google Scholar 

  8. Boley B.A., Weiner J.H.: Theory of Thermal Stresses. Wiley, New York (1960)

    MATH  Google Scholar 

  9. Leibniz G.W.: Demonstrationes novae de resistentia solidorum. Acta Erud. Leibnizens Math. Schriften 6, 106–112 (1684)

    Google Scholar 

  10. Koiter W.T.: On the foundations of the linear theory of thin elastic shells. I. Proc. Kon. Ned. Ak. Wed. B73, 169–195 (1970)

    MathSciNet  Google Scholar 

  11. Kil’chevskiy N.A.: Fundamentals of the Analytic Mechanics of Shells. NASA TT F-297, Washington, DC (1965)

    Google Scholar 

  12. Ainsworth M., Oden J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)

    MATH  Google Scholar 

  13. Gratsch T., Bathe K.-J.: A posteriori error estimation techniques in practical finite element analysis. Comput. Struct. 83, 235–265 (2005)

    MathSciNet  Google Scholar 

  14. Zienkiewicz O.C.: Finite Element Method—Its Basis and Fundamentals. Elsevier, Amsterdam (2005)

    Google Scholar 

  15. Altay G., Dökmeci M.C.: On the fundamental equations of electromagnetoelastic media in variational form with an application to shell/laminae equations. Int. J. Solids Struct. 47, 466–492 (2010)

    MATH  Google Scholar 

  16. Poisson S.D.: Mémoire sur l’équilibre et le mouvement des corps élastiques. Mém. Acad. Scientifique Inst. France, Ser. 2 8, 357–570 (1829)

    Google Scholar 

  17. de Saint-Venant A.J.C.B.: Mémoire sur le calcul de la résistance et de la flexion des pieces solides a simple ou a double courbure, en pregnant simultanément en considération les divers efforts auxquels elles peuvent etre soumises dans tous les sens. Compt. Rendus Acad. Sci. Paris 17, 942–954 (1843)

    Google Scholar 

  18. Rankine W.J.M.: A Manual of Applied Mechanics. R. Griffin & Company Ltd., London (1858)

    Google Scholar 

  19. Kirchhoff G.: Über das Gleichgewicht und die Bewegung eines unendich dünnen Stabes. Crelles J. 56, 285–313 (1859)

    MATH  Google Scholar 

  20. Bresse M.: Cours de Mechanique Appliqué. Mallet-Bachelier, Paris (1859)

    Google Scholar 

  21. Pochhammer L.: Ueber die Fortpflanzunggeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder. J. Reine Angew. Math. 81, 324–336 (1876)

    Google Scholar 

  22. Rayleigh W.S.: The Theory of Sound, vol. 2. Dover Publications, New York (1877)

    Google Scholar 

  23. Chree C.: The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solution and application. Trans. Camb. Philos. Soc. 14, 250–369 (1889)

    ADS  Google Scholar 

  24. Timoshenko S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. Ser. 6 41, 744–746 (1921)

    Google Scholar 

  25. Timoshenko, S.P.: On the transverse vibrations of bars of uniform cross-sections. Philos. Mag. Ser. 6, 43, 125–131 (1922) (see also, Collected Papers of Stephen P. Timoshenko. McGraw-Hill, New York (1953)

    Google Scholar 

  26. Truesdell, C.: The rational mechanics of flexible or elastic bodies, 1638–1788. In: Leonhardi Euleri Opera Omnia Ser. II. Füssli, Zürich (1960)

  27. Kurrer K.E.: The History of the Theory of Structures. Ernst & Sohn, Berlin (2008)

    Google Scholar 

  28. Hay G.E.: The finite displacement of thin rods. Trans. Am. Math. Soc. 51, 65–102 (1942)

    MathSciNet  Google Scholar 

  29. Kynch G.J.: Longitudinal and screw vibrations of beams. Nature 175, 559 (1955)

    ADS  Google Scholar 

  30. Kynch G.J.: The fundamental modes of vibration of uniform beams for medium wavelengths. Br. J. Appl. Phys. 8, 64–73 (1957)

    ADS  Google Scholar 

  31. Ericksen J.L., Truesdell C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1, 295–323 (1958)

    MATH  MathSciNet  Google Scholar 

  32. Green A.E.: The equilibrium of rods. Arch. Ration. Mech. Anal. 3, 417–421 (1959)

    MATH  Google Scholar 

  33. Antman S.S., Warner W.H.: Dynamical theory of hyperelastic rods. Arch. Ration. Mech. Anal. 23, 135–162 (1966)

    MathSciNet  Google Scholar 

  34. Mindlin R.D.: An Introduction to the Mathematical Theory of Vibrations of Elastic Plates. US Army Signals Corps Engng. Lab., Fort Monmouth, NJ (1955)

    Google Scholar 

  35. Mindlin R.D.: Lecture Notes on Elasticity Theory 1& 2. Department of Civil Engineering, Columbia University, New York (1967)

    Google Scholar 

  36. Mindlin R.D.: Low frequency vibrations of elastic bars. Int. J. Solids Struct. 12, 27–49 (1976)

    MATH  Google Scholar 

  37. Deresiewicz, H., Bieniek, M.P., DiMaggio, F.L. (eds): The Collected Papers of Raymond D. Mindlin, vol. 2. Springer, New York (1989)

    Google Scholar 

  38. Şuhubi E.S.: On the foundations of the theory of rods. Int. J. Eng. Sci. 6, 169–191 (1968)

    MATH  Google Scholar 

  39. Dökmeci M.C.: A general theory of elastic beams. Int. J. Solids Struct. 8, 1205–1222 (1972)

    MATH  Google Scholar 

  40. Green A.E., Naghdi P.M., Wenner M.L.: On the theory of rods. Proc. R. Soc. Lond. A 337, 451–507 (1974)

    ADS  MATH  MathSciNet  Google Scholar 

  41. Berdichevsky V.L., Kwashnina S.S.: On equations describing the transverse vibrations of elastic bars. J. Appl. Math. Mech. (PMM) 40, 104–109 (1976)

    Google Scholar 

  42. Sinclair G.B.: The non-linear bending of a cantilever beam with shear and longitudinal deformations. Int. J. Non-linear Mech. 14, 111–122 (1979)

    ADS  MATH  Google Scholar 

  43. Levinson M.: A new rectangular beam theory. J. Sound Vib. 74, 81–87 (1981)

    ADS  MATH  Google Scholar 

  44. Mengi M., Akkaş N.: A new higher order dynamic theory for thermoelastic bars. I: general theory. J. Acoust. Soc. Am. 73, 1918–1922 (1983)

    ADS  MATH  Google Scholar 

  45. Fan H., Widera G.E.O.: Refined engineering beam theory based on the asymptotic expansion approach. AIAA J. 29, 444–449 (1991)

    ADS  Google Scholar 

  46. Parker D.F.: On the derivation of non-linear rod theories from three-dimensional elasticity. J. Appl. Math. Phys. (ZAMP) 35, 833–847 (1984)

    MATH  Google Scholar 

  47. Sankar B.V.: An elasticity solution for functionally graded beams. Compos. Sci. Technol. 61, 689–696 (2001)

    Google Scholar 

  48. İnan, M.: Lecture Notes on Theory of Elasticity. Faculty of Civil Engineering, Division of Technical Mechanics and General Strength of Materials, Istanbul Technical University (see also, Theory of Plane Elasticity, in Turkish) (1959)

  49. İnan, M.: Lecture notes on Advanced Mechanics of Materials, Faculty of Civil Engineering, Division of Technique Mechanics and General Strength of Materials, Istanbul Technical University (1959)

  50. İnan M.: (1966) General Theory of Elastic Rods. Berksoy Matbaasi, Istanbul (in Turkish)

  51. Cinemre V.: Anwendung der Anfangswertmethode auf die Berechnung der Schraubenlinienförmigen Trager. Bull. Tech. Univ. Istanb. 14, 17–27 (1961)

    Google Scholar 

  52. Özbek, T.: On a General Stability Theory of Curved Elastic Rods, Dr.-Ing. Thesis, Istanbul Technical University. I.T.U. Matbaasi, Istanbul (1967) (in Turkish)

  53. Özbek T., Şuhubi E.Ş.: On the theory of bending of thick straight bars. Bull. Tech. Univ. Istanb. 20, 1–17 (1967)

    Google Scholar 

  54. Yu W., Volovoi V.V., Hodges D.H., Hong X.: Validation of the variational asymptotic beam sectional analysis (VABS). AIAA J. 40, 2105–2112 (2002)

    ADS  Google Scholar 

  55. Dai H-H, Li J.: Nonlinear travelling waves in a hyperelastic rod composed of a compressible Mooney–Rivlin material. Int. J. Non-linear Mech. 44, 499–510 (2009)

    ADS  Google Scholar 

  56. Li X.F., Wang B-L., Han J-C.: A higher order theory for static and dynamic analyses of functionally graded beams. Arch. Appl. Mech. 80, 1197–1212 (2010)

    ADS  MATH  Google Scholar 

  57. Carrera E., Giunta G.: Refined beam theories based on Carrera’s unified formulation. Int. J. Appl. Mech. 2, 117–143 (2010)

    Google Scholar 

  58. Carrera E., Petrolo M.: On the effectiveness of higher order terms in refined beam theories. ASME J. Appl. Mech. 78, 021013-1–021013-17 (2011)

    ADS  Google Scholar 

  59. Shi G., Voyiadjis G.Z.: A sixth-order theory of shear deformable beams with variational consistent boundary conditions. ASME J. Appl. Mech. 78, 021019-1–021019-11 (2011)

    ADS  Google Scholar 

  60. Machado S.P.: Non-linear stability analysis of imperfect thin-walled composite beams. Int. J. Non-linear Mech. 45, 100–110 (2010)

    ADS  Google Scholar 

  61. Santos H.A.F.A., Pimenta P.M., de Almeida J.P.M.: Hybrid and multi-field variational principles for geometrically exact three-dimensional beams. Int. J. Non-linear Mech. 45, 809–820 (2010)

    ADS  Google Scholar 

  62. Freno B.A., Cizmas P.G.A.: A computationally effective non-linear beam model. Int. J. Non-linear Mech. 46, 854–869 (2011)

    ADS  Google Scholar 

  63. Giunta G., Belouettar S., Carrera E.: Analysis of FGM beams by means of classical and advanced theories. Mech. Adv. Mater. Struct. 17, 622–635 (2010)

    Google Scholar 

  64. Kapania R.K., Raciti S.: Recent advances in analysis of laminated beams and plates, part I: shear effects and buckling. AIAA J. 27, 923–934 (1989)

    ADS  MATH  MathSciNet  Google Scholar 

  65. Kapania R.K., Raciti S.: Recent advances in analysis of laminated beams and plates, part II: vibrations and propagation. AIAA J. 27, 935–946 (1989)

    ADS  MATH  MathSciNet  Google Scholar 

  66. Vasil’ev V.V., Lur’e S.A.: On refined theories of beams, plates, and shells. J. Compos. Mater. 26, 546–557 (1992)

    ADS  Google Scholar 

  67. Atanakovich M.: Stability Theory of Elastic Rods. World Scientific, London (1997)

    Google Scholar 

  68. Rubin M.B.: Cosserat Theories: Shells, Rods, and Points. Kluwer, New York (2000)

    Google Scholar 

  69. Librescu L., Song O.: Thin-walled Composite Beams: Theory and Applications. Springer, Dordrecht (2005)

    Google Scholar 

  70. Antman S.S.: Nonlinear Problems of Elasticity. Springer, New York (2005)

    MATH  Google Scholar 

  71. Ghugal Y.M., Shimpi R.P.: A review of refined shear deformation theories for isotropic and anisotropic laminated beams. J. Reinf. Plast. Compos. 20, 255–272 (2001)

    ADS  Google Scholar 

  72. Jemielita G.: On kinematical assumptions of refined theories of plates: a survey. ASME J. Appl. Mech. 57, 1088–1091 (1990)

    ADS  Google Scholar 

  73. Dökmeci, M.C., Altay, G.: Variational equations of functionally graded polar piezoelectric structural elements. Paper presented in 16th U.S. National Congress of Theoretical and Applied Mechanics, State College, Pennsylvania, June 27–July 2 (2010)

  74. Lur’e A.S., Shumova N.P.: Kinematic models of refined theories concerning composite beams, plates, and shells. Mech. Compos. Mater. 32, 422–430 (1996)

    Google Scholar 

  75. Zveryayev M.Y.: Analysis of the hypotheses used when constructing the theory beams and plates. J. Appl. Math. Mech. (PMM) 67, 425–434 (2003)

    Google Scholar 

  76. Wang J., Yang J.: Higher order theories of piezoelectric plates and applications. Appl. Mech. Rev. 53, 87–99 (2000)

    ADS  Google Scholar 

  77. Altay, G., Dökmeci, M.C.: Lower Order Variational Equations of Motions, Incremental Motions and Stability of Smart Elements. ITU&BU-TR#1 (2013)

  78. Gurtin M.E.: The linear theory of elasticity. In: Truesdell, C. (eds) Encyclopedia of Physics, vol. VIa/2, pp. 1–295. Springer, New York (1972)

    Google Scholar 

  79. Fichera G.: Existence theorems in elasticity. In: Truesdell, C. (eds) Encyclopedia of Physics, vol. VIa/2, pp. 347–424. Springer, New York (1972)

    Google Scholar 

  80. Green A.E., Naghdi P.M.: On uniqueness in the linear theory of elastic plates and shells. J. Mécanique 10, 251–261 (1971)

    MATH  MathSciNet  Google Scholar 

  81. Naghdi P.M.: The theory shells and plates. In: Truesdell, C. (eds) Encyclopedia of Physics, Physics, Mechanics of Solids, vol. VI/2, pp. 425–640. Springer, New York (1972)

    Google Scholar 

  82. Warner W.H.: The dynamical equations for beams. In: Cermak, J.E., Goodman, J.R. (eds) Developments in Mechanics, pp. 119–130. Colorado State University, Fort Collins (1967)

    Google Scholar 

  83. Dökmeci M.C.: An isothermal theory of anisotropic rods. J. Eng. Math. 9, 311–322 (1975)

    MATH  Google Scholar 

  84. Jones O.E., Ellis A.T.: Longitudinal strain pulse propagation in wide rectangular bars. Part 2—experimental observation and comparison with theory. J. Appl. Mech. 30, 61–69 (1963)

    ADS  Google Scholar 

  85. Aköz, Y.A.: A New Method of Solution and Experimental Corroboration for Beams of Variable Height. Dr.-Ing. Thesis, Istanbul Technical University. I.T.U Matbaasi, Istanbul (1969) (in Turkish)

  86. Aprahamian R., Evensen D.A.: Applications of holography to dynamics—high frequency vibrations of beams. J. Appl. Mech. 37, 287–291 (1970)

    ADS  Google Scholar 

  87. Rosen A.: Theoretical and experimental investigation of the nonlinear torsion and extension of initially twisted bars. J. Appl. Mech. 50, 321–326 (1983)

    ADS  MATH  Google Scholar 

  88. Sokolinsky V.S., von Bremen H.F., Lavoie J.A., Nutt S.R.: Analytical and experimental study of free vibration response of soft-core sandwich beams. J. Sandw. Struct. Mater. 6, 239–261 (2004)

    Google Scholar 

  89. Markworth A.J., Ramesh K.S., Parks W.P.: Review: modelling studies applied to functionally graded materials. J. Mater. Sci. 30, 2183–2193 (1995)

    ADS  Google Scholar 

  90. Suresh S., Mortensen A.: Fundamentals of Functionally Graded Materials. IOM Communications Ltd., London (1998)

    Google Scholar 

  91. Miyamoto Y., Kaysser W.A., Rabin B.H., Kawasaki A., Ford R.G.: Functionally Graded Materials: Design Processing and Applications. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  92. Chakraborty A., Gopalakrishnan S.: Spectrally formulated finite element for wave propagation in functionally graded beams. Int. J. Solids Struct. 40, 2421–2448 (2003)

    MATH  Google Scholar 

  93. Oh S.Y., Librescu L., Song O.: Vibration and instability of functionally graded circular cylindrical spinning thin-walled beams. J. Sound Vib. 285, 1071–1091 (2005)

    ADS  Google Scholar 

  94. Li X.F.: A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. J. Sound Vib. 318, 1210–1229 (2008)

    ADS  Google Scholar 

  95. Kang Y.A., Li X.F.: Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force. Int. J. Non-linear Mech. 44, 696–703 (2009)

    ADS  Google Scholar 

  96. Birman V., Byrd L.W.: Modelling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60, 195–215 (2007)

    ADS  Google Scholar 

  97. Shen H.S.: Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. CRC Press, Boca Raton (2009)

    Google Scholar 

  98. Ekstein H.: High frequency vibrations of thin crystal plates. Phys Rev 68, 11–23 (1945)

    ADS  MATH  MathSciNet  Google Scholar 

  99. Mindlin R.D.: High frequency vibrations of piezoelectric crystal plates. Int. J. Solids Struct. 8, 895–906 (1972)

    MATH  Google Scholar 

  100. Langley R.S., Bardell N.S.: A review of current analysis capabilities applicable to the high frequency vibration prediction of aerospace structures. Aeronaut. J. 102, 287–297 (1988)

    Google Scholar 

  101. Lee C.-Y., Hodges D.H.: Dynamic variational-asymptotic procedure for laminated composite shells—part II: high-frequency vibration analysis. J. Appl. Mech. 76, 011002–011002-7 (2009)

    ADS  Google Scholar 

  102. Brunelle E.J., Robertson S.R.: Initially stressed Mindlin plates. AIAA J. 12, 1036–1045 (1974)

    ADS  MATH  Google Scholar 

  103. Dökmeci, M.C.: Variational theorems for superimposed motions in elasticity, with application to beams. In: Duberg, J.E., Whitesides, J.L. (eds.) Advances in Engineering Science, vol. 2, pp. 481–490. NASA CP-2001, Washington, DC (1976)

  104. Kerr A.D.: On the dynamic response of a prestressed beam. J. Sound Vib. 49, 569–573 (1976)

    ADS  Google Scholar 

  105. Trefftz E.: Zur Theorie der Stabilitat des elastischen Gleichgewichts. Zeit. Angew. Math. Mech. (ZAMM) 13, 160–165 (1933)

    MATH  Google Scholar 

  106. Green A.E., Rivlin R.S., Shield R.T.: General theory of small elastic deformations superposed on finite elastic deformations. Proc. R. Soc. A 211, 128–154 (1952)

    ADS  MATH  MathSciNet  Google Scholar 

  107. Biot M.A.: Mechanics of Incremental Deformations. Wiley, New York (1965)

    Google Scholar 

  108. Pflüger A.: Stabilitatsprobleme der Elastostatik. Springer, Berlin (1964)

    Google Scholar 

  109. İnan, M.: Strength of Materials. Arı Kitabevi, Istanbul (1967) (in Turkish)

  110. İnan, M.: The Method of Initial Values and the Carry-Over Matrix in Elastomechanics. Middle East Technical University, Faculty of Engineering Publication No:20, Ankara (1968)

  111. İnan, E.E.: Cisimlerin Mukavemeti-Çözümlü Problemler. Apraz Matbaasi, Istanbul (1978) (in Turkish)

  112. Kellogg O.D.: Foundations of Potential Theory. Ungar, New York (1946)

    Google Scholar 

  113. Mindlin R.D.: Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int. J. Solids Struct. 10, 625–637 (1974)

    MATH  Google Scholar 

  114. Green A.E., Adkins J.E.: Large Elastic Deformations and Non-linear Continuum Mechanics. Clarendon Press, Oxford (1960)

    MATH  Google Scholar 

  115. Bolotin V.V.: Nonconservative Problems of the Theory of Elastic Stability. Pergamon Press, New York (1963)

    MATH  Google Scholar 

  116. Novozhilov, V.V.: Foundations of Non-linear Theory of Elasticity. Graylock Press, Rochester (1953); or Theory of Elasticity. Israel program for Scientific Translations (1961)

  117. Venkataraman G., Feldkamp L.A., Sahni V.C.: Dynamics of Perfect Crystals. MIT Press, Cambridge, MA (1975)

    Google Scholar 

  118. Hamilton W.R.: On a general method in dynamics. Philos. Trans. R. Soc. Lond. 125, 95–144 (1834)

    Google Scholar 

  119. Hamilton W.R.: Second essay on a general method in dynamics. Philos. Trans. R. Soc. Lond. 125, 247–308 (1835)

    Google Scholar 

  120. Tuesdell C.: A First Course in Rational Continuum Mechanics, vol. 1. Academic Press, New York (1977)

    Google Scholar 

  121. Noll W., Virga E.G.: Fit regions and functions of bounded variation. Arch. Ration. Mech. Anal. 102, 1–21 (1988)

    MATH  MathSciNet  Google Scholar 

  122. Knops R.J., Payne L.E.: Uniqueness Theorems in Linear Elasticity. Springer, New York (1972)

    Google Scholar 

  123. Kirchhoff G.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Crelles J. 40, 51–88 (1850)

    MATH  Google Scholar 

  124. Medick M.A.: One-dimensional theories of wave propagation and vibrations in elastic bars of rectangular cross-section. J. Appl. Mech. 33, 489–495 (1966)

    ADS  MathSciNet  Google Scholar 

  125. Hertelendy P.: An approximate theory governing symmetric motions of elastic rods of rectangular or square cross-section. J. Appl. Mech. 35, 333–341 (1968)

    ADS  Google Scholar 

  126. Mindlin R.D., McNiven H.D.: Axially symmetric waves in elastic rods. J. Appl. Mech. 27, 145–151 (1960)

    ADS  MATH  MathSciNet  Google Scholar 

  127. Lal R., Gupta U.S., Goel C.: Chebyshev polynomials in the study of transverse vibrations of nonuniform rectangular orthotropic plates. Shock Vib. Digest 33, 103–112 (2001)

    Google Scholar 

  128. Zhu H., Sankar B.V.: A combined Fourier series-Galerkin method for the analysis of functionally graded beams. J. Appl. Mech. 71, 421–424 (2004)

    ADS  MATH  Google Scholar 

  129. Bleustein J.L., Stanley R.M.: A dynamical theory of torsion. Int. J. Solids Struct. 6, 569–586 (1970)

    MATH  Google Scholar 

  130. Washizu K.: Variational Methodsin Elasticity and Plasticity. Pergamon Press, London (1968)

    Google Scholar 

  131. Dökmeci M.C.: Dynamic variational principles for discontinuous elastic fields. J. Ship Res. 23, 115–122 (1979)

    Google Scholar 

  132. Yang J.S., Batra R.C.: Free vibrations of a piezoelectric body. J. Elast. 34, 239–254 (1994)

    MATH  Google Scholar 

  133. Altay G., Dökmeci M.C.: On the equations governing the motion of an anisotropic poroelastic material. Proc. R. Soc. A 462, 2373–2396 (2006)

    ADS  MATH  Google Scholar 

  134. de Saint-Venant A.J.C.B.: Mémoire sur la torsion des prismes, avec des considerations sur leur flexion ainsi que sur l’équilibre intérieur des solides élastiques en général, et des formules pratiques pour le calcul de leur résistance a divers efforts s’exercant simultanément. Mémoires Présentés par divers savant a l’Académie des sciences de l’institut de France 14, 233–560 (1856)

    Google Scholar 

  135. Ecsedi I., Baksa A.: Prandtl’s formulation for the Saint-Venants’s torsion of homogeneous piezoelectric beams. Int. J. Solids Struct. 47, 3076–3083 (2006)

    Google Scholar 

  136. Vlasov V.Z.: Thin-Walled Elastic Beams. Israel Program for Scientific Translation, Jerusalem (1961)

    Google Scholar 

  137. Ieşan D.: Classical and Generalized Models of Elastic Rods. Chapman & Hall/CRC Press, Boca Raton (2009)

    MATH  Google Scholar 

  138. Hargittai I.: Structures beyond crystals. J. Mol. Struct. 976, 81–86 (2010)

    ADS  Google Scholar 

  139. Fan T.Y.: Mathematical theory and methods of mechanics of quasicrystalline materials. Engineering 5, 407–448 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Dökmeci.

Additional information

Communicated by Andreas Öchsner.

Dedicated to late Prof. Dipl.-Ing. (ITU) & Dr.-Ing. (ETH, Zürich) Mustafa İnan, with the greatest respect to the highest integrity, and the outstanding teaching of mechanics of materials and scientific achievement, in honour of the centenary of his birth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altay, G., Dökmeci, M.C. On the lower-order theories of continua with application to incremental motions, stability and vibrations of rods. Continuum Mech. Thermodyn. 26, 715–751 (2014). https://doi.org/10.1007/s00161-013-0324-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-013-0324-7

Keywords

Navigation