Skip to main content
Log in

Distribution of nonliner relaxation (DNLR) approach of the annealing effects in semicristalline polymers: structure–property relation for high-density polyethylene (HDPE)

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This work is devoted to the numerical and experimental study of annealing effects on microstructure and mechanical properties of the high-density polyethylene (HDPE). Uniaxiale tension tests are conducted at 25 °C in order to characterize the mechanical behavior of HDPE. The influence of the annealing treatment on the material microstructure is examined by the Fourier transform infrared spectroscopy, and microstructures are characterized using differential scanning calorimetry. The distribution of nonlinear relaxation approach is adopted to describe the mechanical response of virgin and annealed HDPE. Annealing effects are incorporated into the constitutive model by introducing the microstructure (crystallinity degree) evolution on the macroscopic response of the material. The numerical predictions of the model are in good agreement with experimental results for the different states of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bubeck R.A.: Structure–property relationships in metallocene polyethylenes. Mater. Sci. Eng. Rep. 39, 1–28 (2002)

    Article  Google Scholar 

  2. Galeski A.: Morphological alterations during texture producing plastic plan strain compression of high density polyethylene. Prog. Polym. Sci. 28, 1643–1699 (2003)

    Article  Google Scholar 

  3. Meijer H.E.H., Govaert L.E.: Localisation phenomena in glassy polymers: influence of thermal and mechanical history. Prog. Polym. Sci. 30, 915–938 (2005)

    Article  Google Scholar 

  4. Seguela R., Macromol J.: Plastic deformation of polyethylene and ethylene copolymers. Science C 45, 263–287 (2005)

    Google Scholar 

  5. Shyichuk A.V., Stavychna D.Y., White J.R.: Effect of tensile stress on chain scission and crosslinking during photo-oxidation of polypropylene. Polym. Degrad. Stab. 72, 279–285 (2001)

    Article  Google Scholar 

  6. Craig I.H., White J.R., Kin P.C.: Crystallization and chemi-crystallization of recycled photo-degraded polypropylene. Polymer 46, 505–512 (2005)

    Article  Google Scholar 

  7. Briassoulis D., Aristopoulou A., Bonora M., Verlodt I.: Degradation characterisation of agricultural low-density polyethylene films. Biosyst. Eng. 88, 131–143 (2004)

    Article  Google Scholar 

  8. Rebar V.A., Santore M.M.: A total internal reflectance fluorescence nanosclale probe of interfacial potential and ion screening in polyethylene oxide layers adsorbed onto silica. J. Colloid Interface Sci. 178, 29–41 (1996)

    Article  Google Scholar 

  9. Cunat C.: The DNLR approach and relaxation phenomena: Part I—historical account and DNLR formalism. Mech. Time-Depend. Mater. 5, 39–65 (2001)

    Article  ADS  Google Scholar 

  10. Cunat, C.: Approche statistique des propriétés thermodynamiques des états liquides et vitreux. Relaxation des liquides et transition vitreuse. Influence des associations chimiques. These d’état, University de Nancy I. (1985)

  11. Cunat C.: Thermodynamic treatment of relaxation in freshening systems. Universality of the fluctuation distribution law for relaxation time. Zeit. Für Phys. Chem. Neue Folge 157, 419 (1988)

    Article  Google Scholar 

  12. Cunat, C.: Lois constitutives de matériaux complexes stables ou vieillissants. Apports de la thermodynamique de la relaxation. In: Rev. G_en. Therm, vol. 35. Elsevier, Paris (1996)

  13. Boyce M.C., Parks D.M., Argon A.S.: Large inelastic deformation of glassy polymers. Part I: rate dependent constitutive model. Mech. Mater. 7, 15–33 (1988)

    Article  Google Scholar 

  14. Boyce M.C., Socrate S., Llana P.G.: Constitutive model for the finite deformation stress–strain behavior of poly (ethylene terephthalate) above the glass transition. Polymer 41, 2183–2201 (2000)

    Article  Google Scholar 

  15. Arruda E.M., Boyce M.C., Jayachandran R.: Effects of strain rate, temperature and thermo mechanical coupling on the finite strain deformation of glassy polymers. Mech. Mater. 19, 193–212 (1995)

    Article  Google Scholar 

  16. Buckley C.P., Jones D.C.: Glass–Rubber constitutive model for amorphous polymers near the glass transition. Polymer 36, 3301–3312 (1995)

    Article  Google Scholar 

  17. Wu P.D., van der Giessen E.: On neck propagation in amorphous glassy polymers under plane strain tension. Int. J. Plast. 11, 211–235 (1995)

    Article  MATH  Google Scholar 

  18. Bardenhagen S.G., Stout M.G., Gray G.T.: Three-dimensional, finite deformation, viscoplastic constitutive models for polymeric materials. Mech. Mater. 25, 235–253 (1997)

    Article  Google Scholar 

  19. Tervoort T.A., Smit R.J.M., Brekelmans W.A.M., Govaert L.E.: A constitutive equation for the elasto-viscoplastic deformation of glassy polymers. Mech. Time-Depend. Mater. 1, 269–291 (1997)

    Article  ADS  Google Scholar 

  20. Adams A.M., Buckley C.P., Jones D.P.: Biaxial hot drawing of poly(ethylene terephthalate): measurements and modelling of strain-stiffening. Polymer 41, 771–786 (2000)

    Article  Google Scholar 

  21. Ahzi S., Makradi A., Gregory R.V., Edie D.D.: Modeling of deformation behavior and strain-induced crystallization in poly(ethylene terephthalate) above the glass transition temperature. Mech. Mater. 35, 1139–1148 (2003)

    Article  Google Scholar 

  22. Anand L., Gurtin M.E.: A theory of amorphous solids undergoing large deformations, with application to polymeric glasses. Int. J. Solids Struct. 40, 1465–1487 (2003)

    Article  MATH  Google Scholar 

  23. Makradi A., Ahzi S., Gregory R.V., Edie D.D.: A two-phase self-consistent model for the deformation and phase transformation behavior of polymers above the glass transition temperature: application to PET. Int. J. Plast. 21, 741–758 (2005)

    Article  MATH  Google Scholar 

  24. Ayoub, G., Zairi, F., Naıit-Abdelaziz, M., Gloaguen, J.M.: Modelling large deformation behavior under loading–unloading of semi crystalline epolymers: application to a high density polyethylene. Int. J. Plast. 26(3), 329–347 (2010)

    Google Scholar 

  25. M’Rabet, K., Rahouadj, R., Cunat, C.: Modélisation thermodynamique multiéchelle du comportement élasto-visco-plastique du PEHD en grandes deformations uniaxiales sequences. CFM (2007)

  26. Arieby, R.: Caractérisation mécanique et Modélisation thermodynamique du comportement anisotrope du polyéthylène à haute densité, INPL (2007)

  27. Gibbs G.B.: Thermodynamic systems for analysis of dislocation glide. Phil. Mag. 22, 701–706 (1970)

    Article  ADS  Google Scholar 

  28. G’Sell C., Hiver J.M., Dahoun A.: Experimental characterization of deformation damage in solid polymers under tension, and its interrelation with necking. Int. J. Solids Struct. 39, 3857–3872 (2002)

    Article  Google Scholar 

  29. Ferhoum, R., Aberkane, M., Ould Ouali, M.: Modeling of thermal ageing effect on elastic–viscoplastic behavior of semicrystalline polymers by DNLR approach. Procedia Eng. 10, 1815–1822 (2011)

  30. Jauffrès D., Lame O., Vigier G., Doré F.: Microstructural origin of physical and mechanical properties of ultra high molecular weight polyethylene processed by high velocity compaction. Polymer 48, 6374–6383 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ould Ouali.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferhoum, R., Aberkane, M. & Ould Ouali, M. Distribution of nonliner relaxation (DNLR) approach of the annealing effects in semicristalline polymers: structure–property relation for high-density polyethylene (HDPE). Continuum Mech. Thermodyn. 26, 373–385 (2014). https://doi.org/10.1007/s00161-013-0306-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-013-0306-9

Keywords

Navigation