Skip to main content

Description of liquid–gas phase transition in the frame of continuum mechanics

Abstract

A new method of describing the liquid–gas phase transition is presented. It is assumed that the phase transition is characterized by a significant change of the particle density distribution as a result of energy supply at the boiling point that leads to structural changes but not to heating. Structural changes are described by an additional state characteristics of the system—the distribution density of the particles which is presented by an independent balance equation. The mathematical treatment is based on a special form of the internal energy and a source term in the particle balance equation. The presented method allows to model continua which have different specific heat capacities in liquid and in gas state.

This is a preview of subscription content, access via your institution.

References

  1. Alekhin, A.D., Y.L.O., Rudnikov, E.G.: On the entropy principle of phase transition models with a conserved order parameter. Russian J. Phys. Chem. A Focus Chem. 85 (4), 537–541 (2011)

  2. Abeyaratne R., Bhattacharya K., Knowles J.K.: Strain-energy functions with multiple local minima: modeling phase transformations using finite thermoelasticity. In: Fu, Y., Ogden, R.W. (eds.) Nonlinear Elasticity: Theory and Application, pp. 433–490. Cambridge University Press, Cambridge (2001)

    Chapter  Google Scholar 

  3. Abeyaratne R., Knowles J.K.: Evolution of Phase Transitions. A Continuum Theory. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  4. Alt W.H., Pawlow I.: On the entropy principle of phase transition models with a conserved order parameter. Adv. Math. Sci. Appl. 6, 291–376 (1966)

    MathSciNet  Google Scholar 

  5. Altenbach H., Naumenko K., Zhilin P.: A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Continuum Mech. Thermodyn. 15(6), 539–570 (2003)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  6. Anders D., Weinberg K.: Thermophoresis in binary blends. Mech. Mater. 47, 33–35 (2012)

    Article  Google Scholar 

  7. Baniasadi M., Ghader S., Hashemipour H.: Modifying gma equation of state for description of (p, ρ, t) relation of gas and liquids over an extended pressure range. Korean J. Chem. Eng. 28(3), 939–948 (2011)

    Article  Google Scholar 

  8. Becker R.M.: Theorie der Wärme, 3rd edn. Heidelberger Taschenbücher. Springer, Berlin (1985)

    Google Scholar 

  9. Berberan-Santos M.N., Bodunov E.N., Poglian L.: On the entropy principle of phase transition models with a conserved order parameter. J. Math. Chem. 43(4), 1437–1457 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bonasera A., Di Toro M.: Liquid–gas phase transition and compressibility of nuclear matter. Lettere Al Nuovo Cimento 44(3), 172–176 (1985)

    Article  Google Scholar 

  11. Bowen, R.: Theory of Mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. III, pp. 1–127. Academic Press, New York (1976)

  12. Cahn J.W.: On spinodal decomposition. Acta Met 9, 795–801 (1961)

    Article  Google Scholar 

  13. Cahn J.W., Hilliard J.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    ADS  Article  Google Scholar 

  14. de Donde T.: Thermodynamic Theory of Affinity: A Book of Principles. Oxford University Press, Oxford (1936)

    Google Scholar 

  15. Fisher, F., Dial, O.E., Jr.: Equation of state of pure water and sea water. Tech. rep., Marine Physical Laboratory of the Scripps Institution of Oceanography, San Diego (1975)

  16. Fosdick R.L., Zhang Y.: Coexistent phase mixtures in the antiplane shear of an elastic tube. ZAMP 45, 202–244 (1994)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  17. Freidin A.B., Vilchevskaya E.N.: Multiple development of new phase inclusions in elastic solids. Int. J. Eng. Sci. 47, 240–260 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gibbs J.W.: On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Sci. III, 108–248 (1875)

    Google Scholar 

  19. Ginzburg V.L., Landau L.D.: On the theory of superconductivity. J. Exptl. Theoret. Phys. (U.S.S.R.) 20, 1064 (1950)

    Google Scholar 

  20. Green A.E., Naghdi P.M.: A theory of mixtures. Arch. Rat. Mech. Anal. 24(4), 243–263 (1967)

    Article  MathSciNet  Google Scholar 

  21. Grigoriev, I.S., Meilikhov, E.Z. (eds.): Handbook of Physical Quantities. CRC Press, Roca Baton (1997)

    Google Scholar 

  22. Grmela M.: Extensions of classical hydrodynamics. J. Stat. Phys. 132(3), 581–602 (2008)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  23. Gurtin M.E.: Two-phase deformations of elastic solids. Arch. Rat. Mech. Anal. 84(1), 129 (1983)

    MathSciNet  Google Scholar 

  24. Ivanova, E., Vilchevskaya, E.: Description of thermal and micro-structural processes in generalized continua: Zhilin’s method and its modifications. In: Altenbach, H., Forest, S., Krivtsov, A.M. (eds.) Generalized Continua as Models for Materials, pp. 179–197. Springer, Berlin, Heidelberg (2013)

  25. Kikoin, J.K. (ed.): Tables of Physical Values. Handbook. Atomizdat, Moscow (1976)

    Google Scholar 

  26. Klippel A., Müller I.: Plant growth—a thermodynamicist’s view. Cont. Mech. Thermodyn. 9(3), 127–142 (1997)

    Article  MATH  Google Scholar 

  27. Kondepudi D., Prigogine I.: Modern Thermodynamics. From Heat Engines to Dissipative Structures. Wiley, New York (1998)

    MATH  Google Scholar 

  28. Kotake S.: Microscale Energy Transport, Chap. Molecular clusters, pp. 167–186. Taylor & Francis, London (1998)

    Google Scholar 

  29. Kwak H.Y., Kim Y.W.: Homogeneous nucleation and macroscopic growth of gas bubble in organic solutions. Int. J. Heat Mass Transf. 41, 757–767 (1998)

    Article  MATH  Google Scholar 

  30. Kwak H.Y., Lee S.: Homogeneous bubble nucleation predicted by a molecular interaction model. ASME J. Heat Transf. 133, 714–721 (1991)

    Article  Google Scholar 

  31. Landau L., Lifshitz E.: The Classical Theory of Fields, vol. 2, 4th edn. Butterworth-Heinemann, London (1975)

    Google Scholar 

  32. Loicyanskii L.G.: Mekhanika Zhidkosti i Gaza (Mechanics of Fluids, in Russ.). Nauka, Moscow (1987)

    Google Scholar 

  33. Marx D.: Proton transfer 200 years after von grotthuss: insights from ab initio simulations. ChemPhysChem 7(9), 1848–1870 (2006)

    Article  Google Scholar 

  34. Müller I.: A History of Thermodynamics: The Doctrine of Energy and Entropy. Springer, Berlin (2007)

    Google Scholar 

  35. Müller I., Müller W.H.: Fundamentals of Thermodynamics and Applications: With Historical Annotations and Many Citations from Avogadro to Zermelo. Springer, Berlin (2009)

    Google Scholar 

  36. Müller I., Weiss W.: Entropy and Energy: A Universal Competition. Springer, Berlin (2005)

    Google Scholar 

  37. Peng X.: Micro Transport Phenomena During Boiling. Springer, Heidelberg (2011)

    Book  Google Scholar 

  38. Peng X.F., Liu D., Lee D.J.: Cluster dynamics and fictitious boiling in microchannels. Int. J. Heat Mass Transf. 43, 4259–4265 (2000)

    Article  MATH  Google Scholar 

  39. Pines, B.Y.: Odnofokusnye rentgenovskie trubki i prikladnoi rentgenovskii analiz (Monofocus X-ray Tube and Applied X-ray Analysis, in Russ.). Tekhniko-teoreticheskaya literatura, Moscow (1955)

  40. Prigogine I.: Introduction to Thermodynamics of Irreversible Processes. Charles C. Thomas Publishers, Sprindfield (1955)

    Google Scholar 

  41. Prigogine I., Defay R.: Chemical Thermodynamics. Longmans, London (1988)

    Google Scholar 

  42. Prokhorov, A.M. (ed.): Physical Encyclopaedia, vol. 3: Magnetoplasma—Poynting Theorem. Bol’shaya Rossiiskaya Encyklopedia, Moscow (1992)

    Google Scholar 

  43. Spickermann, C.: Phase transitions. In: Entropies of Condensed Phases and Complex Systems, Springer Theses, pp. 177–210. Springer, Heidelberg (2011)

  44. Truesdel C.: Rational Thermodynamics. Springer, New York (1984)

    Book  Google Scholar 

  45. Truesdell, C., Toupin, R.: The classical field theories. In: Flügge, S. (ed.) Encyclopedia of Phycics, vol. III/1. Springer, Heidelberg (1960)

  46. van der Waals J.D.: Thermodynamische theorie der kapillaritSt unter voraussetzung stetiger dichteSnderung. Zeitschrift fnr Physikalische Chemie 13, 657–725 (1894)

    Google Scholar 

  47. Wagner W., Pruss A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31(2), 387–535 (2002)

    ADS  Google Scholar 

  48. Wilmanski K.: Thermomechanics of Continua. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  49. Zeng J.B., Li L.J., Liao Q., Cui W.Z., Chen Q.H., Pan L.M.: Simulation of phase transition process using lattice boltzmann method. Chin. Sci. Bull. 54(24), 4596–4603 (2009)

    Article  Google Scholar 

  50. Zhilin P.A.: Racional’naya mekhanika sploshnykh sred (Rational Continuum Mecanics, in Russ.). Politechnic University Publishing House, St. Petersburg (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena N. Vilchevskaya.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vilchevskaya, E.N., Ivanova, E.A. & Altenbach, H. Description of liquid–gas phase transition in the frame of continuum mechanics. Continuum Mech. Thermodyn. 26, 221–245 (2014). https://doi.org/10.1007/s00161-013-0298-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-013-0298-5

Keywords

  • Liquid–gas phase transition
  • Cluster
  • Chemical potential
  • Source term