Continuum Mechanics and Thermodynamics

, Volume 26, Issue 1, pp 67–78 | Cite as

Mass flow rate prediction of pressure–temperature-driven gas flows through micro/nanoscale channels

  • Hassan Akhlaghi
  • Ehsan Roohi
Original Article


In this paper, we study mass flow rate of rarefied gas flow through micro/nanoscale channels under simultaneous thermal and pressure gradients using the direct simulation Monte Carlo (DSMC) method. We first compare our DSMC solutions for mass flow rate of pure temperature-driven flow with those of Boltzmann-Krook-Walender equation and Bhatnagar-Gross-Krook solutions. Then, we focus on pressure–temperature-driven flows. The effects of different parameters such as flow rarefaction, channel pressure ratio, wall temperature gradient and flow bulk temperature on the thermal mass flow rate of the pressure–temperature-driven flow are examined. Based on our analysis, we propose a correlated relation that expresses normalized mass flow rate increment due to thermal creep as a function of flow rarefaction, normalized wall temperature gradient and pressure ratio over a wide range of Knudsen number. We examine our predictive relation by simulation of pressure-driven flows under uniform wall heat flux (UWH) boundary condition. Walls under UWH condition have non-uniform temperature distribution, that is, thermal creep effects exist. Our investigation shows that developed analytical relation could predict mass flow rate of rarefied pressure-driven gas flows under UWH condition at early transition regime, that is, up to Knudsen numbers of 0.5.


DSMC Thermal creep effects Mass flow rate Micro/nanochannel Pressure–temperature-driven flows 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taylor J., Ren C.L.: Application continuum mechanics to fluid flow in nanochannels. Microfluid. Nanofluid. 1(4), 356 (2005)CrossRefGoogle Scholar
  2. 2.
    Ho C.M., Tai Y.C.: Micro-electro-mechanical-system (MEMS) and fluid flows. Annu. Rev. Fluid Mech. 30, 579 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Cercignani C.: The Boltzmann Equation and its Applications. Springer, New York (1988)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bird G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford Science, Oxford (1994)Google Scholar
  5. 5.
    Taheri P., Struchtrup H.: Rarefaction effects in thermally-driven microflows. Physica A 389, 3069 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Sone Y., Waniguchi Y., Aoki K.: One-way flow of a rarefied gas induced in a channel with a periodic temperature distribution. Phys. Fluids 8(8), 2227 (1996)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Alexeenko A.A., Gimelshein S.F., Muntz E.P., Ketsdever A.D.: Kinetic modeling of temperature driven flows in short microchannels. Int. J. Thermal Sci. 45, 1045 (2006)CrossRefGoogle Scholar
  8. 8.
    Han Y.L., Muntz E.P., Alexeenko A., Young M.: Experimental and computational studies of temperature gradient-driven molecular transport in gas flows through nano/microscale channels. Nanoscale Microscale Thermophys. Eng. 11, 151 (2007)CrossRefGoogle Scholar
  9. 9.
    Han Y.L.: Thermal-creep-driven flows in Knudsen compressors and related nano/microscale gas transport channels. J. Microelectromech. Syst. 17(4), 984–997 (2008)CrossRefGoogle Scholar
  10. 10.
    Sone Y.: Kinetic Theory and Fluid Dynamics. Birkhäuser, Boston (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Knudsen M.: Eine Revision der Gleichgewichtsbedingung der Gase. Thermische Molekularströmung. Ann. Phys. 31, 205 (1910)zbMATHGoogle Scholar
  12. 12.
    Knudsen M.: Thermischer Molekulardruck der Gase in Röhren. Ann. Phys. 33, 1435 (1910)CrossRefGoogle Scholar
  13. 13.
    Loyalka S.K.: Kinetic theory of thermal transpiration and mechanocaloric effect. I. J. Chem. Phys. 55(9), 4497 (1971)ADSCrossRefGoogle Scholar
  14. 14.
    Loyalka S.K.: Slip in the thermal creep flow. Phys. Fluids 14(1), 21 (1971)ADSCrossRefGoogle Scholar
  15. 15.
    Loyalka S.K.: Kinetic theory of thermal transpiration and mechanocaloric effect. II. J. Chem. Phys. 63(9), 4054 (1975)ADSCrossRefGoogle Scholar
  16. 16.
    Loyalka S.K., Storvick T.S.: Kinetic theory of thermal transpiration and mechanocaloric effect. III. Flow of a polyatomic gas between parallel plates. J. Chem. Phys. 71(1), 339 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    Lo S.S., Loyalka S.K., Storvick T.S.: Kinetic theory of thermal transpiration and mechanocalorlc effect. V. Flow of polyatomic gases in a cylindrical tube with arbitrary accommodation at the surface. J. Chem. Phys. 81(5), 2439 (1984)ADSCrossRefGoogle Scholar
  18. 18.
    Kanki T., Iuchi S.: Poiseuille flow and thermal creep of a rarefied gas between parallel plates. Phys. Fluids 16(5), 594 (1973)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Ohwada T., Sone Y., Aoki K.: Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids A 1(12), 2042 (1989)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    Gallis M.A., Torczynski J.R., Rader D.J., Bird G.A.: Convergence behavior of a new DSMC algorithm. J. Comput. Phys. 228, 4532 (2009)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    Stefanov, S.: Particle Monte Carlo algorithms with small number of particles in grid cells. In: Numerical Methods and Applications. Lecture Notes in Computer Science, vol. 6064, p. 110 (2010)Google Scholar
  22. 22.
    Stefanov S.: On DSMC calculations of rarefied gas flows with small number of particles in cells. SIAM J. Sci. Comput. 33, 677 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Roohi E., Darbandi M.: Extending the Navier–Stokes solutions to transition regime in two-dimensional micro- and nanochannel flows using information preservation scheme. Phys. Fluids 21, 082001 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Roohi E., Darbandi M., Mirjalili V.: Direct simulation Monte Carlo solution of subsonic flow through micro/nanoscale channels. J. Heat Transf. 131, 92402 (2009)CrossRefGoogle Scholar
  25. 25.
    Scanlon T.J., Roohi E., White C., Darbandi M., Reese J.M.: An open source, parallel DSMC code for rarefied gas flows in arbitrary geometries. Comput. Fluids 39, 2078 (2010)CrossRefzbMATHGoogle Scholar
  26. 26.
    Darbandi M., Roohi E.: Study of subsonic/supersonic gas flow through micro/nanoscale nozzles using unstructured DSMC solver. Microfluid. Nanofluid. 10, 321 (2011)CrossRefGoogle Scholar
  27. 27.
    Darbandi M., Roohi E.: DSMC simulation of subsonic flow through nanochannels and micro/nano steps. Int. Commun. Heat Mass Transf. 38(10), 1444–1449 (2011)CrossRefGoogle Scholar
  28. 28.
    Roohi E., Darbandi M.: Recommendations on performance of parallel DSMC algorithm in solving subsonic nanoflows. Appl. Math. Model. 36, 2314–2321 (2012)CrossRefGoogle Scholar
  29. 29.
    Ejtehadi O., Roohi E., Abolfazli J.: Investigation of basic molecular gas structure effects on hydrodynamics and thermal behaviors of rarefied shear driven flow using DSMC. Int. Commun. Heat Mass Transf. 39(3), 439–448 (2012)CrossRefGoogle Scholar
  30. 30.
    Akhlaghi, H., Roohi, E., Stefanov, S.: A new iterative wall heat flux specifying technique in DSMC for heating/cooling simulation at micro/nanoscales, vol. 56, pp. 111–125 (2012)Google Scholar
  31. 31.
    Abolfazli, J., Ejtehadi, O., Roohi, E.: Second law analysis of micro/nano Couette flow using DSMC. Int. J. Exergy (2012) (accepted)Google Scholar
  32. 32.
    Roohi, E., Akhlaghi, H.: Study of physical aspects of rarefied gas flow through micro/nano scale channels using DSMC. Arabian J. Sci. Eng. (2012) (accepted)Google Scholar
  33. 33.
    Darbandi M., Roohi E.: Applying a hybrid DSMC/Navier–Stokes frame to explore the effect of splitter plates in micro/nano propulsion systems. Sens Actuators A Phys 189, 409–419 (2013)CrossRefGoogle Scholar
  34. 34.
    Mohammadzadeh A., Roohi E., Niazmand H., Stefanov S., Myong R.S.: Detailed investigation of thermal and hydrodynamic behaviour in micro/nano cavity using DSMC. Phys. Rev. E 85, 056305 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Mohammadzadeh A., Roohi E., Niazmand H.: A parallel DSMC investigation of monatomic/diatomic gas flows in micro/nano cavity. Numer. Heat Transf. Part A Appl. 63(4), 305–325 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Wang M., Li Z.: Simulations for gas flows in microgeometries using the direct simulation Monte Carlo method. Int. J. Heat Fluid Flow 25, 975 (2004)CrossRefGoogle Scholar
  37. 37.
    Alexander F.J., Garcia A.L., Alde B.J.: Cell size dependence of transport coefficients in stochastic particle algorithms. Phys. Fluids 10(6), 1540 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    Hadjiconstantinou N.G.: Analysis of discretization in the direct simulation Monte Carlo. Phys. Fluids 12(10), 2634 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    Shu C., Mao X.H., Chew Y.T.: Particle number per cell and scaling factor effect on accuracy of DSMC simulation of micro flows. Int. J. Numer. Methods Fluids 15(8), 827 (2005)Google Scholar
  40. 40.
    Loyalka S.K.: Comments on Poiseuille flow and thermal creep of a rarefied gas between parallel plates. Phys. Fluids 17(5), 1053 (1974)ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    Ohwada T., Sone Y., Aoki K.: Numerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearized Boltzmann equation for hard-sphere molecules. Phys. Fluids AI 1(9), 1588 (1989)ADSCrossRefzbMATHGoogle Scholar
  42. 42.
    Sone Y., Aoki K.: Asymptotic theory of slightly rarefied gas flow and force on a closed body. Mem. Fac. Eng., Kyoto Univ. 49, 237–248 (1987)ADSMathSciNetGoogle Scholar
  43. 43.
    Karniadakis G.E., Beskok A., Aluru N.: Microflows and Nanoflows: Fundamentals and Simulation. Springer, New York (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.High Performance Computing (HPC) Laboratory, Department of Mechanical EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations