Skip to main content

A direct approach to fiber and membrane reinforced bodies. Part I. Stress concentrated on curves for modelling fiber reinforced materials

Abstract

An approach is outlined to the equilibrium in fiber-reinforced materials in which the fibers are modeled as curves or lines with concentrated material properties. The system of forces representing the interaction of the fibers with the bulk matter is analyzed, and equilibrium of forces is derived from global laws. The displacements of the bulk matter are assumed to have continuous extension to the fibers. This forces the set of admissible deformations superquadratically integrable. This in turn forces the energy of the bulk of superquadratic growth. The material of the bulk matrix therefore cannot be linearly elastic. The energy of fibers can have a slower growth and can be quadratic. A formal set of assumptions is given under which an equilibrium state of minimum energy exists in the given external conditions. A weak form of equilibrium equations is derived for this equilibrium state. An explicitly calculable axisymmetric example is presented with an isotropic and quadratic energy of the matrix (linear elasticity) and linearly stretchable fiber. Since the superquadratic growth assumption is not satisfied, some peculiar features of the solution arise, such as the infinite limit of the radial displacement near the fiber. Nevertheless, from the obtained solution, we can compute the normal force in the fiber and the shear stress at the interface.

This is a preview of subscription content, access via your institution.

References

  1. Adams R.A., Fournier J.J.F.: Sobolev Spaces. Academic Press, New York (2003)

    MATH  Google Scholar 

  2. Dacorogna B.: Direct Methods in the Calculus of Variations. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. de Borst, R., Sadowski, T. (eds.): Lecture notes on composite materials. Springer, Berlin (2008)

    MATH  Google Scholar 

  4. Gladwell G.M.L.: Contact Problems in the Classical Theory of Elasticity. Kluwer, Dordrecht (1980)

    MATH  Google Scholar 

  5. Gobert, J.: Une inéquation fondamentale de la théorie de l’élasticité. Bull Soc. R. Sci. Liege No. 3 et 4 (1962)

  6. Gobert J.: Sur une inégalité de coercivité. J. Math. Appl. 36, 518–528 (1971)

    MathSciNet  MATH  Google Scholar 

  7. Grigolyuk E.I., Talkachev V.M.: Contact Problems in the Theory of Plates and Shells. Mir Publishers, Moscow (1987)

    Google Scholar 

  8. Gurtin M.E.: Configurational Forces as Basic Concepts of Continuum Physics. Springer, New York (2000)

    Google Scholar 

  9. Gurtin M.E., Murdoch I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    MathSciNet  MATH  Article  Google Scholar 

  10. Lebedev N.: Special Functions and Their Applications. Dover Publications, New York (1972)

    MATH  Google Scholar 

  11. Lucchesi M., Šilhavý M., Zani N.: On the balance equation for stresses concentrated on curves. J. Elast. 90, 209–223 (2007)

    Article  Google Scholar 

  12. Melan E.: Der Spannungszustand der durch eine Einzelkraft im innern beanspruchten Halbscheibe. Zeitschrift fuer Angewandte Mathematik und Mechanik 12, 343–346 (1932)

    MATH  Article  Google Scholar 

  13. Melan E.: Ein Beitrag zur Theorie geschweisster Verbindungen. Ing. Arch. 3, 123–129 (1932)

    Article  Google Scholar 

  14. Morrey C.B. Jr.: Multiple integrals in the calculus of variations. Springer, New York (1966)

    MATH  Google Scholar 

  15. Muki R., Sternberg E.: On the diffusion of an axial load from an infinite cylindrical bar embedded in an elastic medium. Int. J. solids Struct. 5, 587–605 (1969)

    MATH  Article  Google Scholar 

  16. Sternberg, E.: Load-transfer and load-diffusion in elastostatics. In: Proceedings of 6th U.S. National Congress of Applied Mechanics. American Society of Mechanical Engineers, pp. 34–61 (1970)

  17. Temam R.: Problémes mathématiques en plasticité. Gauthier–Villars, Paris (1983)

    MATH  Google Scholar 

  18. Timoshenko S.P., Goodier J.N.: Theory of elasticity. McGraw Hill, New York City (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Zani.

Additional information

Communicated by Francesco dell’Isola and Samuel Forest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lucchesi, M., Šilhavý, M. & Zani, N. A direct approach to fiber and membrane reinforced bodies. Part I. Stress concentrated on curves for modelling fiber reinforced materials. Continuum Mech. Thermodyn. 25, 537–558 (2013). https://doi.org/10.1007/s00161-012-0285-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-012-0285-2

Keywords

  • Fibers in the bulk matter
  • Equilibrium of forces

Mathematics Subject Classification (2000)

  • 74B99