Skip to main content

A damage constitutive model for sliding friction coupled to wear

Abstract

Several new constitutive models are formulated for the planar interface of a soft body sliding on a rigid soil, describing stick-slip phenomena due to friction, and wear due to abrasion. Attention is focused on damage at the interface, by neglecting any interaction with damage of body and any propagation of damage inside the body. Models are formulated in the general framework of the Thermodynamics of the irreversible processes and account for suitable defined internal variables of phenomenological type, namely gap, isotropic friction hardening and wear. The main feature of the new presented models is that the formulation of the wear process at the interface is obtained in the contest of Damage Mechanics, and it is based on the formal analogy between abrasion of a soft body and ductile damage of an elastic-plastic material. By following this approach, a scalar wear field, an effective stress and appropriate state and dissipation potentials are defined, able to describe a tangential isotropic wear process due to stick-slip and to hardening mechanism. Both cases of linear and nonlinear friction hardening are formulated; moreover, wearable and no-wearable bodies are considered. Numerical results relevant to one-dimensional problems are illustrated for monotonic, forward-backward and cyclic displacement time-histories, showing evolution for stress, gap and wear. Results furnished by different models are compared and discussed.

This is a preview of subscription content, access via your institution.

References

  1. Lemaitre J., Chaboche J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  2. Lemaitre J.: A Course on Damage Mechanics. Springer, Berlin (1996)

    MATH  Book  Google Scholar 

  3. Lemaitre J., Desmorat R.: Engineering Damage Mechanics. Springer, Berlin (2005)

    Google Scholar 

  4. Burwell J.T.: Survey of possible wear mechanism. Wear 1, 119–141 (1957)

    Article  Google Scholar 

  5. Stachowiak G.W., Batchelor A.W.: Engineering Tribology. Elsevier Butterworth-Heinemann, Burlington (2005)

    Google Scholar 

  6. Williams J.A.: Wear and wear particles—some fundamentals. Tribol. Int. 38(10), 863–870 (2005)

    Article  Google Scholar 

  7. Archard J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953)

    ADS  Article  Google Scholar 

  8. Persson B.N.J.: Sliding Friction: Physical Principles and Applications. Springer, Berlin (2010)

    Google Scholar 

  9. Popov V.L.: Contact Mechanics and Friction. Springer, Berlin (2010)

    MATH  Book  Google Scholar 

  10. Rabinowicz E.: Friction and Wear of Materials. Wiley, New York (1995)

    Google Scholar 

  11. Maeda K., Bismarck A., Briscoe B.J.: Mechanisms of scratching frictions and damage maps for rubber compounds. Wear 259(1–6), 651–660 (2005)

    Article  Google Scholar 

  12. Grosch K.A.: Abrasion of rubber and its relation to tire wear. Rubber Chem. Technol. 65(1), 78–106 (1992)

    Article  Google Scholar 

  13. Bowden F.P., Tabor D.: The Friction and Lubrication of Solids, vol. I. Clarendon Press, Oxford (1950)

    Google Scholar 

  14. Bowden F.P., Tabor D.: The Friction and Lubrication of Solids, vol. II. Clarendon Press, Oxford (1964)

    Google Scholar 

  15. American Society of Mechanics: ASM Handbook vol. 18. Friction, Lubrication and Wear Technology. ASM International, Ohio-Usa (1992)

  16. Hockenhull B.S., Kopalinsky E.M., Oxley P.L.B.: An investigation of the role of low-cycle fatigue in producing surface damage in sliding metallic friction. Wear 148(1), 135–146 (1991)

    Article  Google Scholar 

  17. Kopalinsky E.M., Oxley P.L.B.: Investigation of the deformation and damage sustained by a wearing surface in sliding metallic friction. J. Tribol. T. Asme 117(2), 315–320 (1995)

    Article  Google Scholar 

  18. Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact, vol. 655, Lecture Notes in Physics. Springer, Berlin (2004)

  19. Zavarise G., Wriggers P., Nackenhorst U.: A Guide for Engineers to Computational Contact Mechanics. TCN, Trento (2006)

    Google Scholar 

  20. Mròz Z., Stupkiewicz S.: An anisotropic friction and wear model. Int. J. Solids Struct. 31, 1113–1131 (1994)

    Article  Google Scholar 

  21. Hjiaj M., Feng Z.Q., de Saxcé G., Mròz Z.: On the modelling of complex anisotropic frictional contact laws. Int. J. Eng. Sci. 42, 1013–1034 (2004)

    MATH  Article  Google Scholar 

  22. Malte A.P., Böhm M.: Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium. Math. Methods Appl. Sci. 42, 1257–1282 (2008)

    Google Scholar 

  23. Amar M., Andreucci D., Bisegna P., Gianni R.: Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues. Math. Model. Meth. Appl. S. 14(9), 1261–1295 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  24. Amar M., Andreucci D., Bisegna P., Gianni R.: On a hierarchy of models for electrical conduction in biological tissues. Math. Method. Appl. Sci. 29, 767–787 (2006)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  25. Amar M., Andreucci D., Bisegna P., Gianni R.: Homogenization limit and asymptotic decay for electrical conduction in biological tissues in the high radiofrequency range. Commun. Pure Appl. Anal. 5(9), 1131–1160 (2010)

    MathSciNet  Google Scholar 

  26. Bouchitté G., Bellieud M.: Homogenization of a soft elastic material reinforced by fibers. Asymptot. Anal. 32, 153–183 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Zmitrowicz A.: A thermodynamical model of contact, friction and wear: 1 Governing equations. Wear 114(2), 135–168 (1987)

    Article  Google Scholar 

  28. Zmitrowicz A.: A thermodynamical model of contact, friction and wear. 2. Constitutive-equations for materials and linearized theories. Wear 114(2), 169–197 (1987)

    Article  Google Scholar 

  29. Zmitrowicz A.: A thermodynamical model of contact, friction and wear. 3. Constitutive-equations for friction, wear and frictional heat. Wear 114(2), 199–221 (1987)

    Article  Google Scholar 

  30. Kolmogorov V.: Friction and wear model for a heavily loaded sliding pair 1. Metal damage and fracture model. Wear 194(1–2), 71–79 (1996)

    Article  Google Scholar 

  31. dell’Isola F., Romano A.: On a general balance law for continua with an interface. Ricerche Matematica 35, 325–337 (1986)

    MathSciNet  MATH  Google Scholar 

  32. dell’Isola F., Romano A.: On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface. Int. J. Eng. Sci. 25, 1459–1468 (1987)

    MathSciNet  MATH  Article  Google Scholar 

  33. dell’Isola F., Romano A.: A phenomenological approach to phase transition in classical field theory. Int. J. Eng. Sci. 25, 1469–1475 (1987)

    MathSciNet  MATH  Article  Google Scholar 

  34. dell’Isola F., Kosinski W.: Deduction of thermodynamic balance laws for bidimensional nonmaterial directed continua modelling interphase layers. Arch. Mech. 45, 333–359 (1993)

    MathSciNet  MATH  Google Scholar 

  35. dell’Isola, F., Kosinski, W: The interface between phases as a layer, Part II. A H-order model for two dimensional nonmaterial continua. In: Rionero, S. (ed.) Waves and Stability in Continuous Media-5th International Meeting on Waves and Stability in Continuous Media vol. 4, pp. 108–113 (1991)

  36. dell’Isola F., Madeo A., Seppecher P.: Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46(17), 3150–3164 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  37. Stromberg N., Johansson L., Klarbring A.: Derivation and analysis of a generalized standard model for contact, friction and wear. Int. J. Solids Struct. 33(13), 1817–1836 (1995)

    MathSciNet  Article  Google Scholar 

  38. Ireman P., Klarbring A., Stromberg N.: A model of damage coupled to wear. Int. J. Solids Struct. 40, 2957–2974 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  39. dell’Isola F., Hutter K.: What are the dominant thermomechanical processes in the basal sediment layer of large ice sheets?. Proc. R. Soc. Lond. A Mat. 454, 1169–1195 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  40. dell’Isola F., Hutter K.: A qualitative analysis of the dynamics of a sheared and pressurized layer of saturated soil. Proc. R. Soc. Lond. A Mat. 454, 3105–3120 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  41. Del Piero G., Raous M.: A unified model for adhesive interfaces with damage, viscosity, and friction. Eur. J. Mech. A Solid 29(4), 496–507 (2010)

    MathSciNet  ADS  Article  Google Scholar 

  42. Maurini C., Pouget J., dell’Isola F.: Extension of the Euler-Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach. Comput. Struct. 84, 1438–1458 (2006)

    Article  Google Scholar 

  43. Moreau, J.J.: On unilateral constraints, friction and plasticity. In: Capriz, G., Stampacchia, G (eds.) New Variational Techniques in Mathematical Physics, pp. 171–322. Edizioni Cremonese, Roma (1974)

  44. Halphen B., Nguyen Q.S.: Sur les matériaux standard généralisés. J. Mécanique 14, 39–63 (1975)

    MATH  Google Scholar 

  45. Rice J.: Inelastic constitutive relations for solids: an internal-variable theory and its applications to metal plasticity. J. Mech. Phys. Solids 19, 203–240 (1971)

    Article  Google Scholar 

  46. Ziegler H., Wehrli C.: The derivation of constitutive relations from the free energy and the dissipation function. Adv. Appl. Mech. 25, 183–237 (1987)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  47. Moreau, J.J.: Application of Convex Analysis to the Treatment of Elastoplastic Systems. Lecture Notes in Mathematics, Springer, New York (1975)

  48. Moreau J.J.: La notion de sur-potential et les liaisons en élastostatique. Comptes Rendus de l’Académie des Sciences 267, 954–957 (1968)

    MathSciNet  MATH  Google Scholar 

  49. Moreau J.J.: Sur les lois de frottement, de plasticité et de viscosité. Comptes Rendus de l’Académie des Sciences 271, 608–611 (1970)

    Google Scholar 

  50. Quiligotti S., Maugin G., dell’Isola F.: An Eshelbian approach to the nonlinear mechanics of constrained solid-fluid mixtures. Acta Mech. 160, 45–60 (2003)

    MATH  Article  Google Scholar 

  51. Choksi R., Del Piero G., Fonseca I. et al.: Structured deformations as energy minimizers in models of fracture and hysteresis. Math. Mech. Solids 4(3), 321–356 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  52. Del Piero, G.: Well posedness of constitutive equations of the kinematical hardening type. In: The constitutive law in thermoplasticity, pp. 353–377, CISM Courses and Lectures, 281. Springer, Vienna (1984)

  53. Del Piero G.: On a mathematical theory of elastic-plastic materials. Arch. Mech. 27(2), 253–271 (1975)

    MathSciNet  MATH  Google Scholar 

  54. Del Piero G.: On the elastic-plastic material element. Arch. Ration. Mech. Anal. 59(2), 111–129 (1975)

    MathSciNet  MATH  Google Scholar 

  55. Lyakhovsky V., Ben-Zion Y., Agnon A.: A viscoelastic damage rheology and rate- and state-dependent friction. Geophys. J. Int. 161(1), 179–190 (2005)

    ADS  Article  Google Scholar 

  56. Gambarotta L.: Friction-damage coupled model for brittle materials. Eng. Fract. Mech. 71, 829–836 (2004)

    Article  Google Scholar 

  57. Alpas A.T., Hu H., Zhang J.: Plastic-deformation and damage accumulation below the worn surfaces. Wear 162, 188–195 (1993)

    Article  Google Scholar 

  58. dell’Isola F., Woźniak C.: On phase transition layers in certain micro-damaged two-phase solids. Int. J. Fract. 83, 175–189 (1997)

    Article  Google Scholar 

  59. dell’Isola F., Hutter K.: Continuum mechanical modelling of the dissipative processes in the sediment-water layer below glaciers. Comptes Rendus de l’Academie de Sciences 325, 449–456 (1997)

    MATH  Google Scholar 

  60. dell’Isola F., Guarascio M., Hutter K.: A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 70, 323–337 (2000)

    ADS  MATH  Article  Google Scholar 

  61. Sciarra G., dell’Isola F., Hutter K.: A solid-fluid mixture model allowing for solid dilatation under external pressure. Continuum Mech. Therm. 13, 287–306 (2001)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  62. dell’Isola F., Seppecher P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. Comptes Rendus de l’Academie de Sciences 321, 303–308 (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Luongo.

Additional information

Communicated by Francesco dell'Isola and Samuel Forest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

D’Annibale, F., Luongo, A. A damage constitutive model for sliding friction coupled to wear. Continuum Mech. Thermodyn. 25, 503–522 (2013). https://doi.org/10.1007/s00161-012-0283-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-012-0283-4

Keywords

  • Damage
  • Friction
  • Quasi-static contact
  • Wear