Skip to main content

Dynamic modeling of taut strings carrying a traveling mass

Abstract

In this paper, a new consistent dynamic model is proposed, aimed at studying linear vibrations induced in an elastic wire by a bilaterally constrained single mass moving with a constant velocity. Starting from a variational formulation, through the Hadamard’s condition, a corrective term to the local linear stiffness is determined in the continuum model as a function of the moving mass velocity; in this way, the boundary conditions are properly found. The representation of the solutions of the hyperbolic equations governing the motion of the wire presents some difficulties, which are solved by means of a suitable coordinate transformation in a time-invariant domain and a judicious choice of the set of shape functions, to be used in the discrete formulation of the problem. This new description allows an easy estimation of high-order deformations that are neglected by a purely linear approach. When the mass velocity is sufficiently high, displacements near the supports show high gradients: in these cases, it is necessary to use an unknown velocity or introduce an advanced mechanical model in order to correctly describe the motion of the mass. Numerical examples confirm the stability of the proposed solution in all conditions examined.

This is a preview of subscription content, access via your institution.

References

  1. Stanišić M.M., Hardin J.C.: On the response of beams to an arbitrary number of concentrated moving masses. J. Frankl. Inst. 287(2), 115–123 (1969)

    Google Scholar 

  2. Stanišić M.M., Euler J.A., Montgomery S.T.: On a theory concerning the dynamical behavior of structures carrying moving masses. Ing. Arch. 43(5), 295–305 (1974)

    MATH  Google Scholar 

  3. Sadiku S., Leipholz H.H.E.: On the dynamics of elastic systems with moving concentrated masses. Ing. Arch. 57, 223–242 (1987)

    MATH  Google Scholar 

  4. Mackertich S.: Response of a beam to a moving mass. J. Acoust. Soc. Am. 92(3), 1766–1769 (1992)

    ADS  Google Scholar 

  5. Lee H.P.: On the dynamic behaviour of a beam with an accelerating mass. Arch. Appl. Mech. 65, 564–571 (1995)

    ADS  MATH  Google Scholar 

  6. Michaltsos G., Sophianopoulos D., Kounadis A.N.: The effect of a moving mass and other parameters on the dynamic response of a simply supported beam. J. Sound. Vib. 191(3), 357–362 (1996)

    ADS  MATH  Google Scholar 

  7. Lee H.P.: Dynamic response of a beam with a moving mass. J. Sound. Vib. 191(2), 289–294 (1996)

    ADS  Google Scholar 

  8. Foda M.A., Abduljabbar Z.: A dynamic Green function formulation for the response of a beam structure to a moving mass. J. Sound. Vib. 210(3), 295–306 (1998)

    ADS  Google Scholar 

  9. Dyniewicz B., Bajer C.I.: New feature of the solution of a Timoshenko beam carrying the moving mass particle. Arch. Mech. 62(5), 327–341 (2010)

    MathSciNet  Google Scholar 

  10. Jiang J.-Q.: Transient responses of Timoshenko beams subject to a moving mass. J. Vib. Control 17(13), 1975–1982 (2011)

    MathSciNet  Google Scholar 

  11. Stanišić M.M., Lafayette W.: On a new theory of the dynamic behavior of the structures carrying moving masses. Ing. Arch. 55(3), 176–185 (1985)

    MATH  Google Scholar 

  12. Esmailzadeh E., Ghorashi M.: Vibration analysis of beams traversed by uniform partially distributed moving masses. J. Sound. Vib. 184(1), 9–17 (1995)

    ADS  MATH  Google Scholar 

  13. Ting E.C., Genin J., Ginsberg J.H.: A general algorithm for moving mass problems. J. Sound. Vib. 33(1), 49–58 (1974)

    ADS  MATH  Google Scholar 

  14. Akin J.E., Mofid M.: Numerical solution for response of beams with moving mass. J. Struct. Eng. ASCE 115(1), 120–131 (1989)

    Google Scholar 

  15. Cifuentes A.O.: Dynamic response of a beam excited by a moving mass. Finite Elem. Anal. Des. 5, 237–246 (1989)

    MATH  Google Scholar 

  16. Lee U.: Revisiting the moving mass problem: Onset of separation between the mass and beam. J. Vib. Acoust. 118, 516–521 (1996)

    Google Scholar 

  17. Mofid M., Akin J.E.: Discrete element response of beams with traveling mass. Adv. Eng. Softw. 25, 321–331 (1996)

    Google Scholar 

  18. Esmailzadeh E., Ghorashi M.: Vibration analysis of a Timoshenko beam subjected to a travelling mass. J. Sound. Vib. 199(4), 615–628 (1997)

    ADS  Google Scholar 

  19. Pesterev A.V., Bergman L.A.: A contribution to the moving mass problem. J. Vib. Acoust. 120, 824–826 (1998)

    Google Scholar 

  20. Rieker J.R., Trethewey M.W.: Finite element analysis of an elastic beam structure subjected to a moving distributed mass train. Mech. Syst. Signal Process. 13(1), 31–51 (1999)

    ADS  Google Scholar 

  21. Yavari A., Nouri M., Mofid M.: Discrete element analysis of dynamic response of Timoshenko beams under moving mass. Adv. Eng. Softw. 33(3), 143–153 (2002)

    MATH  Google Scholar 

  22. Lou P., Dai G.-L., Zeng Q.-Y.: Finite-element analysis for a Timoshenko beam subjected to a moving mass. J. Mech. Eng. Sci. 220(5), 669–678 (2006)

    Google Scholar 

  23. Esen I.: Dynamic response of a beam due to an accelerating moving mass using moving finite element approximation. Math. Comput. Appl. 16(1), 171–182 (2011)

    MathSciNet  Google Scholar 

  24. Wu J.-J.: Dynamic analysis of an inclined beam due to moving loads. J. Sound. Vib. 288(1-2), 107–131 (2005)

    ADS  MATH  Google Scholar 

  25. Wang Y.-M.: The transient dynamics of multiple accelerating/decelerating masses traveling on an initially curved beam. J. Sound. Vib. 286(1-2), 207–228 (2005)

    ADS  Google Scholar 

  26. Chang C.-C., Wang Y.-M.: The dynamics and control of a moving mass travelling on an initially curved beam. J. Mar. Sci. Technol. 15(4), 273–277 (2007)

    Google Scholar 

  27. Xu X., Xu W., Genin J.: A non-linear moving mass problem. J. Sound. Vib. 204, 495–504 (1997)

    ADS  Google Scholar 

  28. Wang Y.-M.: The dynamical analysis of a finite inextensible beam with an attached accelerating mass. Int. J. Solids Struct. 35(9-10), 831–854 (1998)

    MATH  Google Scholar 

  29. Siddiqui S.A.Q., Golnaraghi M.F., Heppler G.R.: Dynamics of a flexible cantilever beam carrying a moving mass. Nonlinear Dyn. 15, 137–154 (1998)

    MATH  Google Scholar 

  30. Siddiqui S.A.Q., Golnaraghi M.F., Heppler G.R.: Dynamics of a flexible beam carrying a moving mass using perturbation, numerical and time-frequency analysis techniques. J. Sound. Vib. 229(5), 1023–1055 (2000)

    ADS  Google Scholar 

  31. Siddiqui S.A.Q., Golnaraghi M.F., Heppler G.R.: Large free vibrations of a beam carrying a moving mass. Int. J. Nonlinear Mech. 38, 1481–1493 (2003)

    MATH  Google Scholar 

  32. Lee H.P.: On the separation of a mass travelling on a beam with axial forces. Mech. Res. Commun. 22(4), 371–376 (1995)

    ADS  MATH  Google Scholar 

  33. Lee H.P.: Transverse vibration of a Timoshenko beam acted on by an accelerating mass. Appl. Acoust. 47(4), 319–330 (1996)

    ADS  Google Scholar 

  34. Lee U.: Separation between the flexible structure and the moving mass sliding on it. J. Sound. Vib. 209(5), 867–877 (1998)

    ADS  Google Scholar 

  35. Rao G.V.: Linear dynamics of an elastic beam under moving loads. J. Vib. Acoust. ASME 122, 281–289 (2000)

    Google Scholar 

  36. Wang Y.-M.: The dynamic analysis of a beam-mass system due to the occurence of two-component parametric resonance. J. Sound. Vib. 258(5), 951–967 (2002)

    ADS  Google Scholar 

  37. Pan L., Qiao N., Lin W., Liang Y.: Stability and local bifurcation in a simply-supported beam carrying a moving mass. Acta Mech. Solida Sin. 20(2), 123–129 (2007)

    Google Scholar 

  38. Dehestani M., Mofid M., Vafai A.: Investigation of critical influential speed for moving mass problems on beams. Appl. Math. Model 33, 3885–3895 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Nikkhoo A., Rofooei F.R., Shadnam M.R.: Dynamic behavior and modal control of beams under moving mass. J. Sound. Vib. 306, 712–724 (2007)

    MathSciNet  ADS  Google Scholar 

  40. Bilello C., Bergman L.A., Kuchma D.: Experimental investigation of a small-scale bridge model under a moving mass. J. Struct. Eng. ASCE 130(5), 799–804 (2004)

    Google Scholar 

  41. Ouyang H.: Moving-load dynamic problems: A tutorial (with a brief overview). Mech. Syst. Signal Process. 25, 2039–2060 (2011)

    ADS  Google Scholar 

  42. Wu J.-S., Chen C.-C.: The dynamic analysis of a suspended cable due to a moving load. Int. J. Numer. Methods Eng. 28(10), 2361–2381 (1989)

    MATH  Google Scholar 

  43. Wang Y.-M.: The transient dynamics of a cable-mass system due to the motion of an attached accelerating mass. Int. J. Solids Struct. 37(9), 1361–1383 (2000)

    MATH  Google Scholar 

  44. Al-Qassab M., Nair S., O’Leary J.: Dynamics of an elastic cable carrying a moving mass particle. Nonlinear Dyn. 33, 11–32 (2003)

    MATH  Google Scholar 

  45. Williams P.: Dynamics of a cable with an attached sliding mass. Anziam J. 47, C86–C100 (2005)

    Google Scholar 

  46. Luongo, A., Piccardo, G.: Perturbation and numerical analysis of suspended cables traveled by a single mass. In: Proceedings of XIX AIMETA, Ancona, IT (2009)

  47. Wang L., Rega G.: Modelling and transient planar dynamics of suspended cables with moving mass. Int. J. Solids Struct. 47, 2733–2744 (2010)

    MATH  Google Scholar 

  48. Smith C.E.: Motions of a stretched string carrying a moving mass particle. J. Appl. Mech.-T ASME 31, 29–37 (1964)

    ADS  MATH  Google Scholar 

  49. Rodeman R., Longcope D.B., Shampine L.F.: Response of a string to an accelerating mass. J. Appl. Mech.-T ASME 43(4), 675–680 (1976)

    ADS  MATH  Google Scholar 

  50. Derendyayev N.V., Soldatov I.N.: The motion of a point mass along a vibrating string. J. Appl. Math. Mech. 61(4), 681–684 (1997)

    Google Scholar 

  51. Bajer C.I., Dyniewicz B.: Space-time approach to numerical analysis of a string with a moving mass. Int. J. Numer. Methods Eng. 76, 1528–1543 (2008)

    MathSciNet  MATH  Google Scholar 

  52. Bajer C.I., Dyniewicz B.: Virtual functions of the space-time finite element method in moving mass problems. Comput. Struct. 87, 444–455 (2009)

    Google Scholar 

  53. Dyniewicz B., Bajer C.I.: Paradox of a particle’s trajectory moving on a string. Arch. Appl. Mech. 79, 213–223 (2009)

    ADS  MATH  Google Scholar 

  54. Metrikine A.V.: Parametric instability of a moving particle on a periodically supported infinitely long string. J. Appl. Mech.-T ASME 75(1), 011006.1–011006.8 (2008)

    Google Scholar 

  55. Pesterev A.V., Bergman L.A.: Response of elastic continuum carrying moving linear oscillator. J. Eng. Mech. ASCE 123(8), 878–884 (1997)

    Google Scholar 

  56. Yang, B., Tan, C.A., Bergman, L.A.: On the problem of a distributed parameter system carrying a moving oscillator. In: Tzou, H.S., Bergman, L.A. (eds.) Dynamics and Control of Distributed Systems, pp. 69–94. Cambridge University Press (1998)

  57. Yang B., Tan C.A., Bergman L.A.: Direct numerical procedure for solution of moving oscillator problems. J. Eng. Mech. ASCE 126(5), 462–469 (2000)

    Google Scholar 

  58. Sofi A., Muscolino G.: Dynamic analysis of suspended cables carrying moving oscillators. Int. J. Solids Struct. 44, 6725–6743 (2007)

    MATH  Google Scholar 

  59. Sofi, A.: Planar dynamics of inclined cables carrying moving oscillators. In: Proceedings of XX AIMETA, Bologna, IT (2011)

  60. Wickert J.A., Mote C.D.: Linear transverse vibration of an axially moving string-particle system. J. Acoust. Soc. Am. 84, 963–969 (1988)

    ADS  Google Scholar 

  61. Wickert J.A., Mote C.D.: Classical vibration analysis of axially moving continua. J. Appl. Mech.-T ASME 57(3), 738–744 (1990)

    ADS  MATH  Google Scholar 

  62. Wickert J.A., Mote C.D.: Traveling load response of an axially moving string. J. Sound. Vib. 149, 267–284 (1991)

    ADS  Google Scholar 

  63. Chen L.-Q.: Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. Rev. 58(2), 91–116 (2005)

    ADS  Google Scholar 

  64. Wang Y., Huang L., Liu X.: Eigenvalue and stability analysis for transverse vibrations of axially moving strings based on Hamiltonian dynamics. Acta Mech. Sinica 21(5), 485–494 (2005)

    MathSciNet  ADS  MATH  Google Scholar 

  65. Lü L.-F., Wang Y.-F., Liu Y.-X.: Complex frequency analysis of an axially moving string with multiple attached oscillators by using Green’s function method. In: Luo, A.C.J. (eds) Dynamical Systems: Discontinuity, Stochasticity and Time-Delay, pp. 371–381. Springer, New York (2010)

    Google Scholar 

  66. Luongo, A., Piccardo, G.: Dynamic analysis of taut strings subjected to trains of moving forces. In: Proceedings of XX AIMETA, Bologna, IT (2011)

  67. Pesterev A.V., Bergman L.A.: An improved series expansion of the solution to the moving oscillator problem. J. Vib. Acoust. 122, 54–61 (2000)

    Google Scholar 

  68. Chen L.-Q., Zhao W.-J.: A numerical method for simulating transverse vibrations of an axially moving string. Appl. Math. Comput. 160, 411–422 (2005)

    MathSciNet  MATH  Google Scholar 

  69. Pesterev A.V., Bergman L.A., Tan C.A., Tsao T.-C., Yang B.: On asymptotics of the solution of the moving oscillator problem. J. Sound. Vib. 260, 519–536 (2003)

    ADS  Google Scholar 

  70. Luongo A., Paolone A.: Multiple scale analysis for divergence-hopf bifurcation of imperfect symmetric systems. J. Sound. Vib. 218(3), 527–539 (1998)

    MathSciNet  ADS  MATH  Google Scholar 

  71. Luongo A., Di Egidio A., Paolone A.: On the proper form of the amplitude modulation equations for resonant systems. Nonlinear Dyn. 27(3), 237–254 (2002)

    MathSciNet  MATH  Google Scholar 

  72. Luongo A., Paolone A., Di Egidio A.: Multiple timescales analysis for 1:2 and 1:3 resonant Hopf bifurcations. Nonlinear Dyn. 34(3-4), 269–291 (2003)

    MathSciNet  MATH  Google Scholar 

  73. Mote C.D.: On the nonlinear oscillation of an axially moving string. J. Appl. Mech.-T ASME 33, 463–464 (1966)

    ADS  Google Scholar 

  74. Gavrilov S.: Nonlinear investigation of the possibility to exceed the critical speed by a load on a string. Acta Mech. 154, 47–60 (2002)

    MATH  Google Scholar 

  75. Lee K.Y., Renshaw A.A.: Solution of the moving mass problem using complex eigenfunction expansions. J. Appl. Mech. ASME 67, 823–827 (2000)

    ADS  MATH  Google Scholar 

  76. dell’Isola F., Madeo A., Placidi L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D Continua. ZAMM-Z. Angew. Math. Mech. 92(1), 52–71 (2011)

    MathSciNet  Google Scholar 

  77. dell’Isola F., Madeo A., Seppecher P.: Boundary conditions at fluid-permeable interfaces in porous media: A variational approach. Int. J. Solids Struct. 46(17), 3150–3164 (2009)

    MathSciNet  MATH  Google Scholar 

  78. dell’Isola F., Guarascio M., Hutter K.: A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 70(5), 323–337 (2000)

    ADS  MATH  Google Scholar 

  79. Sciarra G., dell’Isola F., Hutter K.: A solid-fluid mixture model allowing for solid dilatation under external pressure. Continuum Mech. Thermodyn. 13(5), 287–306 (2001)

    MathSciNet  ADS  MATH  Google Scholar 

  80. Quiligotti S., Maugin G.A., dell’Isola F.: An Eshelbian approach to the nonlinear mechanics of constrained solid-fluid mixtures. Acta Mech. 160(1–2), 45–60 (2003)

    MATH  Google Scholar 

  81. dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach “á la D’Alembert”. Z. Angew Math. Phys. (2012). doi:10.1007/s00033-012-0197-9

  82. Berdichevsky V.: Variational Principles of Continuum Mechanics: I. Fundamentals. Springer, Berlin (2009)

    Google Scholar 

  83. Gavrilov S.N.: Transition through the critical velocity for a moving load in an elastic waveguide. Tech. Phys. 45(4), 515–518 (2000)

    Google Scholar 

  84. Ciarlet P.G.: A justification of the von Kármán equations. Arch. Ration. Mech. Anal. 73(4), 349–389 (1980)

    MathSciNet  MATH  Google Scholar 

  85. Wheeler L.: Stress bounds for the torsion of tubes of uniform wall thickness. J. Elast. 4, 281–292 (1974)

    MATH  Google Scholar 

  86. Wheeler L., Horgan C.O.: Upper and lower bounds for the shear stress in the Saint-Venant theory of flexure. J. Elast. 6(4), 383–403 (1976)

    MATH  Google Scholar 

  87. Avellaneda M.: Iterated homogenization, differential effective medium theory and applications. Commun. Pure Appl. Math. 40(5), 527–554 (1987)

    MathSciNet  MATH  Google Scholar 

  88. dell’Isola F., Kosinski W.: Deduction of thermodynamic balance laws for bidimensional nonmaterial directed continua modelling interphase layers. Arch. Mech. 45(3), 333–359 (1993)

    MathSciNet  MATH  Google Scholar 

  89. dell’Isola F., Batra R.C.: Saint-Venant’s problem for porous linear elastic materials. J. Elast. 47(1), 73–81 (1997)

    MathSciNet  MATH  Google Scholar 

  90. Maurini C., Pouget J., dell’Isola F.: On a model of layered piezoelectric beams including transverse stress effect. Int. J. Solids Struct. 41(16-17), 4473–4502 (2004)

    MATH  Google Scholar 

  91. Maurini C., Pouget J., dell’Isola F.: Extension of the Euler–Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach. Comput. Struct. 84(22–23), 1438–1458 (2006)

    Google Scholar 

  92. Alibert J.J., Seppecher P., dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    MathSciNet  MATH  Google Scholar 

  93. dell’Isola F.: Linear growth of a liquid droplet divided from its vapour by a “soap bubble”-like fluid interface. Int. J. Eng. Sci. 27(9), 1053–1067 (1989)

    MathSciNet  MATH  Google Scholar 

  94. Weinberger H.F.: A First Course in Partial Differential Equations with Complex Variables and Transform Methods. Dover Publications Inc., New York (1995)

    Google Scholar 

  95. Myint-U T., Debnath L.: Linear Partial Differential Equations for Scientists And Engineers. Birkhäuser, Boston (2007)

    MATH  Google Scholar 

  96. Wilson E.L.: Three-Dimensional Static and Dynamic Analysis of Structures. 3rd edn. Computers and Structures Inc., Berkeley (2002)

    Google Scholar 

  97. Andreaus U., dell’Isola F., Porfiri M.: Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control 10(5), 625–659 (2004)

    MATH  Google Scholar 

  98. Maurini C., dell’Isola F., Vescovo D.D.: Comparison of piezoelectronic networks acting as distributed vibration absorbers. Mech. Syst. Signal Process. 18(5), 1243–1271 (2004)

    ADS  Google Scholar 

  99. dell’Isola F., Vidoli S.: Continuum modelling of piezoelectromechanical truss beams: An application to vibration damping. Arch. Appl. Mech. 68(1), 1–19 (1998)

    MathSciNet  ADS  MATH  Google Scholar 

  100. dell’Isola F., Vidoli S.: Damping of bending waves in truss beams by electrical transmission lines with PZT actuators. Arch. Appl. Mech. 68(9), 626–636 (1998)

    ADS  MATH  Google Scholar 

  101. dell’Isola F., Ruta G.C., Batra R.C.: A second-order solution of Saint-Venant’s problem for an elastic pretwisted bar using Signorini’s perturbation method. J Elast. 49(2), 113–127 (1998)

    MathSciNet  MATH  Google Scholar 

  102. Di Egidio A., Luongo A., Vestroni F.: A non-linear model for the dynamics of open cross-section thin-walled beams—Part I: Formulation. Int. J. NonLinear Mech. 38(7), 1067–1081 (2003)

    MATH  Google Scholar 

  103. Paolone A., Vasta M., Luongo A.: Flexural-torsional bifurcations of a cantilever beam under potential and circulatory forces I: Non-linear model and stability analysis. Int. J. NonLinear Mech. 41(4), 586–594 (2006)

    ADS  Google Scholar 

  104. Luongo A., Di Egidio A.: Divergence, Hopf and double-zero bifurcations of a nonlinear planar beam. Comput. Struct. 84(24-25), 1596–1605 (2006)

    Google Scholar 

  105. Di Egidio A., Luongo A., Vestroni F.: A non-linear model for the dynamics of open cross-section thin-walled beams—Part II: Forced motion. Int. J. NonLinear Mech. 38(7), 1083–1094 (2003)

    MATH  Google Scholar 

  106. Luongo A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25(1–3), 133–156 (2001)

    MathSciNet  MATH  Google Scholar 

  107. Luongo A., Romeo F.: Real wave vectors for dynamic analysis of periodic structures. J. Sound. Vib. 279(1–2), 309–325 (2005)

    ADS  Google Scholar 

  108. Romeo F., Luongo A.: Vibration reduction in piecewise bi-coupled periodic structures. J. Sound. Vib. 268(3), 601–615 (2003)

    ADS  Google Scholar 

  109. Romeo F., Luongo A.: Invariant representation of propagation properties for bi-coupled periodic structures. J. Sound. Vib. 257(5), 869–886 (2002)

    ADS  Google Scholar 

  110. Gomez B.J., Repetto C.E., Stia C.R., Welti R.: Oscillations of a string with concentrated masses. Eur. J. Phys. 28, 961–975 (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Piccardo.

Additional information

Communicated by Francesco dell'Isola and Samuel Forest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferretti, M., Piccardo, G. Dynamic modeling of taut strings carrying a traveling mass. Continuum Mech. Thermodyn. 25, 469–488 (2013). https://doi.org/10.1007/s00161-012-0278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-012-0278-1

Keywords

  • Moving mass
  • Variational equations
  • Moving boundary problems
  • Dynamic modeling
  • Linear dynamics
  • Galerkin techniques
  • Taut strings