Skip to main content

Advertisement

Log in

An enhanced concept of rheological models to represent nonlinear thermoviscoplasticity and its energy storage behavior

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

An enhanced rheological network is presented for the material modeling of thermoviscoplasticity. By introducing new basic elements, nonlinear isotropic and kinematic hardening may be depicted as well as an improved description of energy storage and dissipation during plastic deformations. Satisfying the thermomechanical consistency, the yield function and the flow rule are directly deduced from the stress equilibrium and the kinematics of the rheological network by means of simple algebraic calculations. Novel approaches are proposed to account for a process-dependent energy storage also for the case of ideal plasticity. The resulting energy storage behavior is investigated and validated by means of the simulation of tension test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altenbach J., Altenbach H.: Einführung in die Kontinuumsmechanik. Teubner, Stuttgart (1994)

    Google Scholar 

  2. Armstrong, P.J., Frederick, C.O.: A Mathematical Representation of the Multiaxial Bauschinger Effect. General Electricity Generating Board, Report No. RD/B/N731 (1966)

  3. Bever M.B., Holt D.L., Titchener A.L.: The Stored Energy of Cold Work. Pergamon Press, Oxford (1973)

    Google Scholar 

  4. Bröcker C., Matzenmiller A.: Thermoviscoplasticity deduced from enhanced rheological models. PAMM 12, 1–2 (2012)

    Article  Google Scholar 

  5. Chaboche J.L.: Cyclic viscoplastic constitutive equations, part I: a thermodynamically consistent formulation. J. Appl. Mech. 60, 813–821 (1993)

    Article  ADS  MATH  Google Scholar 

  6. Chaboche J.L.: Cyclic viscoplastic constitutive equations, part II: stored energy—comparison between models and experiments. J. Appl. Mech. 60, 822–828 (1993)

    Article  ADS  Google Scholar 

  7. Chrysochoos A., Maisonneuve O., Martin G., Caumon H., Chezeaux J.C.: Plastic and dissipated work and stored energy. Nucl. Eng. Des. 114, 323–333 (1989)

    Article  Google Scholar 

  8. Findley W.N., Lai J.S., Onaran K.: Creep and Relaxation of Nonlinear Viscoelastic Materials. Dover Publication, New York (1989)

    Google Scholar 

  9. Giesekus H.: Phänomenologische Rheologie. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  10. Haupt P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  11. Haupt, P.: Theory of materials: summarizing remarks. In: Bruhns, O.T., Meyers, A. (eds.) Proceedings of 9th International Symposium on Plasticity and Impact Mechanics. The University Press Bochum (2007)

  12. Haupt P., Helm D., Tsakmakis C.: Stored energy and dissipation in thermoviscoplasticity. ZAMM 77, S119–S120 (1997)

    MATH  Google Scholar 

  13. Helm, D.: Experimentelle Untersuchung und phänomenologische Modellierung thermomechanischer Kopplungseffekte in der Metallplastizität. In: Hartmann, S., Tsakmakis, C. (eds.) Aspekte der Kontinuumsmechanik und Materialtheorie. Report 1/1998 of the Institute of Mechanics, University of Kassel, Moenchebergstr. 7, Kassel (1998)

  14. Helm D.: Stress computation in finite thermoviscoplasticity. Int. J. Plast. 22, 1699–1727 (2006)

    Article  MATH  Google Scholar 

  15. Jansohn, W.: Formulierung und Integration von Stoffgesetzen zur Beschreibung großer Deformationen in der Thermoplastizität und -viskoplastizität. Doctoral Thesis, Scientific reports FZKA–6002, Institute for Materials Research, Research Center Karlsruhe, Kaiserstr. 12, Karlsruhe (1997)

  16. Kamlah, M.: Zur Modellierung des Verfestigungsverhaltens von Materialien mit statischer Hysterese im Rahmen der phänomenologischen Thermomechanik. Doctoral Thesis, Report 3/1994 of the Institute of Mechanics, University of Kassel, Moenchebergstr. 7, Kassel (1994)

  17. Kamlah M., Haupt P.: On the macroscopic description of stored energy and self heating during plastic deformation. Int. J. Plast. 13, 893–911 (1998)

    Article  Google Scholar 

  18. Kletschkowski T., Schomburg U., Bertram A.: Viskoplastische Materialmodellierung am Beispiel des Dichtungswerkstoffs Polytetrafluorethylen. Technische Mechanik 21, 227–241 (2001)

    Google Scholar 

  19. Krawietz A.: Materialtheorie. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  20. Krempl E., McMahon J.J., Yao D.: Viscoplasticity based on overstress with a differential growth law for the equilibrium stress. Mech. Mater. 5, 35–48 (1986)

    Article  Google Scholar 

  21. Lemaitre J., Chaboche J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  22. Lion A.: A physically based method to represent the thermo-mechanical behaviour of elastomers. Acta Mech. 123, 1–25 (1997)

    Article  MATH  Google Scholar 

  23. Lion A.: Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models. Int. J. Plast. 16, 469–494 (2000a)

    Article  MATH  Google Scholar 

  24. Lion, A.: Thermomechanik von Elastomeren: Experimente und Materialtheorie. Habilitation Thesis, Report 1/2000 of the Institute of Mechanics, University of Kassel, Moenchebergstr. 7, Kassel. http://nbn-resolving.de/urn:nbn:de:hebis:34-2007092619247 (2000b)

  25. Lion, A., Sedlan, K.: Finite Thermoviskoplastizität: Eine Methode zur Formulierung thermodynamisch konsistenter Stoffgleichungen. In: Hartmann, S., Tsakmakis, C. (eds.) Aspekte der Kontinuumsmechanik und Materialtheorie. Report 1/1998 of the Institute of Mechanics, University of Kassel, Moenchebergstr. 7, Kassel (1998)

  26. Maugin G.A.: The Thermomechanics of Plasticity and Fracture. Cambridge University Press, Cambrigde (1992)

    Book  MATH  Google Scholar 

  27. Meinhard, H.: Rheologische Untersuchungen zu Härteeindruckexperimenten im Nanometerbereich. Doctoral Thesis, Institute of Physics, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 7, Halle. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:gbv:3-000000239 (1999)

  28. Oliferuk W., Gadaj S.P., Grabski M.W.: Energy storage during the tensile deformation of armco iron and austenitic steel. Mater. Sci. Eng. 70, 131–141 (1985)

    Article  Google Scholar 

  29. Oliferuk W., Maj M., Raniecki B.: Experimental analysis of energy storage rate components during tensile deformation of polycrystals. Mater. Sci. Eng. A 374, 77–81 (2004)

    Article  Google Scholar 

  30. Perżyna P.: The constitutive equations for rate sensitive plastic materials. Q. Appl. Math. 20, 321–332 (1963)

    MATH  Google Scholar 

  31. Reiner M.: Rheologie in elementarer Darstellung. Carl Hanser Verlag, München (1969)

    Google Scholar 

  32. Rieger, S.: Temperaturabhängige Beschreibung visko-elasto-plastischer Deformationen kurzglasfaserverstärkter Thermoplaste. Modellbildung, Numerik und Experimente. Doctoral Thesis, Institute of Applied Mechanics (Civil Engineering), University Stuttgart, Pfaffenwaldring 7, Stuttgart. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-19462 (2004)

  33. Shutov A., Panhans S., Kreißig R.: A phenomenological model of finite strain viscoplasticity with distortional hardening. J. Appl. Math. Mech. 91(8), 653–680 (2011)

    MATH  Google Scholar 

  34. Shutov A.V., Ihlemann J.: On the simulation of plastic forming under consideration of thermal effects. Materialwissenschaft und Werkstofftechnik 42, 632–638 (2011)

    Article  Google Scholar 

  35. Simo J., Miehe C.: Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput. Methods Appl. Mech. Eng. 98(1), 41–104 (1992)

    Article  ADS  MATH  Google Scholar 

  36. Simo J.C., Hughes T.J.R.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  37. Taylor G.I., Quinney H.: The latent energy remaining in a metal after cold working. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 143, 307–326 (1934)

    Article  ADS  Google Scholar 

  38. Tsakmakis, C.: Methoden zur Darstellung inelastischen Materialverhaltens bei kleinen Deformationen. Habilitation Thesis, Report 5/1994 of the Institute of Mechanics, University of Kassel, Moenchebergstr. 7, Kassel. http://nbn-resolving.de/urn:nbn:de:hebis:34-2007102419481 (1994)

  39. Tschoegl N.W.: The Phenomenological Theory of Linear Viscoelastic Behavior. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  40. Valanis K.C.: A theory of viscoplasticity without a yield surface: part I, general theory. Arch. Mech. 23, 517–533 (1971)

    MathSciNet  MATH  Google Scholar 

  41. Visintin A.: Mathematical models of hysteresis. In: Bertotti, G., Mayergoyz, I.D. (eds.) The Science of Hysteresis, vol. 1, Elsevier, Amsterdam (2006)

    Google Scholar 

  42. Wriggers P.: Nichtlineare Finite-Element-Methoden. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  43. Ziegler H.: An Introduction to Thermomechanics. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Matzenmiller.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bröcker, C., Matzenmiller, A. An enhanced concept of rheological models to represent nonlinear thermoviscoplasticity and its energy storage behavior. Continuum Mech. Thermodyn. 25, 749–778 (2013). https://doi.org/10.1007/s00161-012-0268-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-012-0268-3

Keywords

Mathematics Subject Classification (2010)

Navigation