Skip to main content

Bottom-up modeling of damage in heterogeneous quasi-brittle solids

Abstract

The theoretical modeling of multisite cracking in quasi-brittle materials is a complex damage problem, hard to model with traditional methods of fracture mechanics due to its multiscale nature and to strain localization induced by microcracks interaction. Macroscale “effective” elastic models can be conveniently applied if a suitable Helmholtz free energy function is identified for a given material scenario. Del Piero and Truskinovsky (Continuum Mech Thermodyn 21:141–171, 2009), among other authors, investigated macroscale continuum solutions capable of matching—in a top-down view—the phenomenology of the damage process for quasi-brittle materials regardless of the microstructure. On the contrary, this paper features a physically based solution method that starts from the direct consideration of the microscale properties and, in a bottom-up view, recovers a continuum elastic description. This procedure is illustrated for a simple one-dimensional problem of this type, a bar modeled stretched by an axial displacement, where the bar is modeled as a 2D random lattice of decohesive spring elements of finite strength. The (microscale) data from simulations are used to identify the “exact” (macro-) damage parameter and to build up the (macro-) Helmholtz function for the equivalent elastic model, bridging the macroscale approach by Del Piero and Truskinovsky. The elastic approach, coupled with microstructural knowledge, becomes a more powerful tool to reproduce a broad class of macroscopic material responses by changing the convexity–concavity of the Helmholtz energy. The analysis points out that mean-field statistics are appropriate prior to damage localization but max-field statistics are better suited in the softening regime up to failure, where microstrain fluctuation needs to be incorporated in the continuum model. This observation is of consequence to revise mean-field damage models from literature and to calibrate Nth gradient continuum models.

This is a preview of subscription content, access via your institution.

References

  1. Broberg K.B.: Cracksand Fracture. Academic Press, London (1999)

    Google Scholar 

  2. Rice, J.R.: Mathematical analysis in the mechanics of fracture. In: Liebowitz, H. (ed.) Fracture: An Advanced Treatise, vol. 2, pp. 191–311. Academic Press, New York (1968)

  3. Bourdin B., Francfort G.A., Marigo J.-J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  4. Krajcinovic D.: Damage Mechanics. North-Holland, Amsterdam (1996)

    Google Scholar 

  5. Hegemier G.A., Read R.H.: On deformation and failure of brittle solids: some outstanding issues. Mech. Mater. 4, 215–259 (1985)

    Article  Google Scholar 

  6. Krajcinovic D., Rinaldi A.: Thermodynamics and statistical physics of damage processes in quasi-ductile solid. Mech. Mater. 37, 299–315 (2005)

    Article  Google Scholar 

  7. Kreher W., Pompe W.: Internal Stresses in Heterogeneous Solids. Akademie-Verlag, Berlin (1989)

    MATH  Google Scholar 

  8. Khisaeva Z.F., Ostoja-Starzewski M.: On the size of RVE in finite elasticity of random composites. J. Elast. 85, 153–173 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  9. Dell’Isola F., Romano A.: On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface. Int. J. Eng. Sci. 25, 1459–1468 (1987)

    MathSciNet  MATH  Article  Google Scholar 

  10. Dell’Isola F., Romano A.: On a general balance law for continua with an interface. Ricerche Mat. 35, 325–337 (1986)

    MathSciNet  MATH  Google Scholar 

  11. Dell’Isola F., Kosinski W.: Deduction of thermodynamic balance laws for bidimensional nonmaterial directed continua modelling interphase layers. Arch. Mech. 45, 333–359 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Dell’Isola F., Seppecher P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. Comptes Rendus de l’Academie de Sciences Serie IIb: Mecanique, Physique, Chimie, Astronomie 321, 303–308 (1995)

    MATH  Google Scholar 

  13. Dell’Isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32, 33–52 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  14. Alibert J., Seppecher P., Dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8, 51–73 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  15. Dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach “à à la D’Alembert”. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 1–23 (2012)

  16. Forest S., Pradel F., Sab K.: Asymptotic analysis of heterogeneous Cosserat media. Int. J. Solids Struct. 38, 4585–4608 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  17. Forest S.: Micromorphic approach for gradient elasticity, viscoplasticity and damage. J. Eng. Mech. 135, 117–131 (2009)

    Article  Google Scholar 

  18. Chambolle A., Francfort G.A., Marigo J.-J.: Revisiting energy release rates in brittle fracture. J. Nonlinear Sci. 20, 395–424 (2010)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  19. Chambolle A., Francfort G.A., Marigo J.-J.: When and how do cracks propagate. J. Mech. Phys. Solids 56, 16141622 (2009)

    MathSciNet  Google Scholar 

  20. Del Piero G.: One-dimensional ductile-brittle transition, yielding, and structured deformations. In: Argoul, P., Frémond, M., Nguyen, Q.S. (eds.) Variations of Domains and Free Boundary Problems in Solid Mechanics, pp. 203–210. Kluwer, Dordrecht (1999)

    Chapter  Google Scholar 

  21. Del Piero, G.: Interface energies and structured deformations in plasticity. In: Dal Maso, G., Tomarelli, F. (eds.) Variational Methods for Discontinuous Structures, Progress in Nonlinear Differential Equations and Their Applications, vol. 51, pp. 103–116. Birkhauser, Basel (2002)

  22. DelPiero G., Owen D.R.: Structured deformations of continua. Arch. Rat. Mech. Anal. 124, 99–155 (1993)

    MathSciNet  Article  Google Scholar 

  23. Del Piero G., Truskinovsky L.: A one-dimensional model for localized and distributed fracture. J. Phys. IV 8, 95–102 (1998)

    Google Scholar 

  24. Del Piero G., Truskinovsky L.: Macro- and micro-cracking in one-dimensional elasticity. Int. J. Solids Struct. 38, 1135–1148 (2001)

    MATH  Article  Google Scholar 

  25. Delaplace A., Pijaudier-Cabot G., Roux S.: Progressive damage in discrete models and consequences on continuum modeling. J. Mech. Phys. Solids 44(1), 99–136 (1996)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  26. Sunyk R., Steinmann P.: On higher gradients in continuum-atomistic modelling. Int. J. Solids Struct. 40(24), 6877–6896 (2003)

    MATH  Article  Google Scholar 

  27. Steinmann P.: On boundary potential energies in deformational and configurational mechanics. J. Mech. Phys. Solids 56, 772–780 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  28. Voyiadjis G.Z., Kattan P.I.: Advances in Damage Mechanics: Metals and Metal Matrix Composites. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  29. Voyiadjis G.Z., Abu Al-Ruba R.K., Palazotto A.N.: Thermodynamic framework for coupling of non-local viscoplasticity and non-local anisotropic viscodamage for dynamic localization problems using gradient theory. Int. J. Plast. 20, 981–1038 (2004)

    MATH  Article  Google Scholar 

  30. Del Piero G., Truskinovsky L.: Elastic bars with cohesive energy. Continuum Mech. Thermodyn. 21, 141–171 (2009)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  31. Curtin W.A., Scher H.: Brittle fracture in disordered materials. J. Mater. Res. 5(3), 535–553 (1990)

    ADS  Article  Google Scholar 

  32. Jagota A., Bennison S.J.: Element breaking rules in computational models for brittle fracture. Model. Simul. Mater. Sci. Eng. 3, 485–501 (1995)

    ADS  Article  Google Scholar 

  33. Krajcinovic D., Basista M.: Rupture of central-force lattices revisited. J. Phys. I 1, 241–245 (1991)

    Article  Google Scholar 

  34. Krajcinovic D., Mastilovic S., Vujosevic M.: Brittle to quasi-brittle transition. Meccanica 231, 1–17 (1998)

    Google Scholar 

  35. Krajcinovic D., Vujosevic M.: Strain localization—short to long correlation length transition. Int. J. Solids Struct. 35(31–32), 4147–4166 (1998)

    MATH  Article  Google Scholar 

  36. Mastilovic S., Krajcinovic D.: Statistical models of brittle deformation: part II: computer simulations. Int. J. Plast. 15, 427–456 (1999)

    Article  Google Scholar 

  37. Mastilovic S., Krajcinovic D.: Penetration of rigid projectiles through quasi-brittle materials. J. Appl. Mech. 66, 585–592 (1999)

    ADS  Article  Google Scholar 

  38. Mastilovic S., Krajcinovic D.: High velocity expansion of a cavity within a brittle material. J. Mech. Phys. Solids 47, 577–610 (1999)

    ADS  MATH  Article  Google Scholar 

  39. Krajcinovic D., Mastilovic S.: Model of quasi-ductile deformations that bridges the scales. Theor. Appl. Fract. Mech. 37, 167–182 (2001)

    Article  Google Scholar 

  40. Mastilovic S., Rinaldi A., Krajcinovic D.: Ordering effect of kinetic energy on dynamic deformation of brittle solids. Mech. Mater. 40(4-5), 407–417 (2008)

    Article  Google Scholar 

  41. Mastilovic S.: A note on short-time response of two-dimensional lattices during dynamic loading. Int. J. Damage Mech. 17, 357–361 (2008)

    Article  Google Scholar 

  42. Mastilovic S.: Some observations regarding stochasticity of dynamic response od 2D disordered brittle lattices. Int. J. Damage Mech. 20, 267–277 (2011)

    Article  Google Scholar 

  43. Mastilovic S.: Further remarks on stochastic damage evolution of brittle solids under dynamic tensile loading. Int. J. Damage Mech. 20, 900–921 (2011)

    Article  Google Scholar 

  44. Krajcinovic D., Rinaldi A.: Statistical damage mechanics-1. Theory. J. Appl. Mech. 72, 76–85 (2005)

    ADS  MATH  Article  Google Scholar 

  45. Rinaldi A., Mastilovic S., Krajcinovic D.: Statistical damage mechanics-2. Const. Relations. J. Theor. Appl. Mech. 44(3), 585–602 (2006)

    Google Scholar 

  46. Rinaldi A., Peralta P., Krajcinovic D., Lai Y.C.: Prediction of fatigue properties with discrete damage mechanics. Int. J. Fatigue 28, 1069–1080 (2006)

    Article  Google Scholar 

  47. Rinaldi A., Mastilovic S., Krajcinovic D.: Extreme value theory and statistical damage mechanics. Int. J. Damage. Mech. 16(1), 57–76 (2007)

    Article  Google Scholar 

  48. Rinaldi A., Lai Y.-C.: Statistical damage theory of 2d lattices: energetics and physical foundations of damage parameter. Int. J. Plast. 23, 1796–1825 (2007)

    MATH  Article  Google Scholar 

  49. Rinaldi A., Krajcinovic K., Peralta P., Lai Y.-C.: Modeling polycrystalline microstructures with lattice models: a quantitative approach. Mech. Mater. 40, 17–36 (2008)

    Article  Google Scholar 

  50. Rinaldi A.: A rational model for 2D disordered lattices under uniaxial loading. Int. J. Damage Mech. 18, 233–257 (2009)

    Article  Google Scholar 

  51. Rinaldi, A.: Advances in statistical damage mechanics: new modelling strategies. In: Voyiadjis, G. (ed.) The Monograph “Damage Mechanics and Micromechanics of Localized Fracture Phenomena in Inelastic Solids”, CISM Course Series, vol. 525, Springer, Berlin, ISBN 978-3-7091-0426-2 (2011)

  52. Rinaldi, A., Gusmano, G., Licoccia, S.: Application of statistical damage mechanics concepts to acoustic emissions health monitoring. In: Advances in Sound Localization, 978-953-307-224-1, INTECH Publ. (2011)

  53. Iturrioz, I., d’Avila, V.M.R., Bittencourt, E., Morquio, A.: Analysis of performance different numerical methods to capture the scale effect. COBEM 2005—18th International Congress of Mechanical Engineering: MG-Brasil (2005)

  54. Miguel L.F.F., Iturrioz I., Riera J.D.: Size effects and mesh independence in dynamic fracture analysis of brittle materials. Comput. Model. Eng. Sci. 56, 1–16 (2010)

    MATH  Google Scholar 

  55. Porcu E., Gregori P., Mateu J., Ostoja-Starzewski M.: New classes of spectral densities for lattice processes and random fields built from simple univariate margins. Stoch. Environ. Res. Risk Assess. 26(4), 479–490 (2012)

    Article  Google Scholar 

  56. Wang G.A., Cheng H.-D., Ostoja-Starzewski M., Al-Ostaz A., Radziszewski P.: Hybrid lattice particle modelling approach for polymeric materials subject to high strain rate loads. Polymers 2010(2), 3–30 (2010)

    Article  Google Scholar 

  57. Ostoja-Starzewski M., Wang G.: Particle modeling of random Crack patterns in epoxy plates. Probab. Eng. Mech. 21(3), 267–275 (2006)

    Article  Google Scholar 

  58. Tadmor E.B., Phillips R., Ortiz M.: Hierarchical modeling in the mechanics of materials. Int. J. Solids Struct. 37, 379–389 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  59. Monette L., Anderson M.P.: Elastic and fracture properties of the two-dimensional triangular and square lattices. Model. Simul. Mater. Sci. Eng. 2, 53–66 (1994)

    ADS  Article  Google Scholar 

  60. Rinaldi A.: Statistical model with two order parameters for ductile and soft fiber bundles in nanoscience and biomaterials. Phys. Rev. E (Stat. Nonlinear Soft. Matter Phys.) 83(4–2), 046126 (2011)

    ADS  Article  Google Scholar 

  61. Chang C.S., Misra A.: Theoretical and experimental study of regular packings of granules. J. Eng. Mech. ASCE 115(4), 704–720 (1989)

    Article  Google Scholar 

  62. Chang C.S., Misra A.: Computer simulation and modelling of mechanical properties of particulates. J. Comput. Geotech. 7(4), 262–287 (1989)

    Article  Google Scholar 

  63. Chang C.S., Misra A.: Application of uniform strain theory to heterogeneous granular solids. J. Eng. Mech. ASCE 116(10), 2310–2328 (1990)

    Article  Google Scholar 

  64. Misra A., Chang C.S.: Effective elastic moduli of heterogeneous granular solids. Int. J. Solids Struct. 30(18), 2547–2566 (1993)

    MATH  Article  Google Scholar 

  65. Misra A.: Mechanistic model for contact between rough surfaces. J. Eng. Mech. ASCE 123(5), 475–484 (1997)

    Article  Google Scholar 

  66. Misra A.: Effect of asperity damage on friction behavior of single fracture. Eng. Fract. Mech. 69(17), 1997–2014 (2002)

    Article  Google Scholar 

  67. Misra, A., Marangos, O.: Application of a micromechanical model to wave propagation through nonlinear rough interfaces under stress. In: Ultrasonics Symposium, Proceedings Book Series: Ultrasonics Symposium, vols. 1–5, pp. 309–312 (2006)

  68. Misra A., Marangos O.: Parametric studies of wave propagation through imperfect interfaces using micromechanics based effective stiffness. Rev. Prog. Quant. Nondestr. Eval. 27B, 1074–1081 (2008)

    ADS  Google Scholar 

  69. Misra A., Marangos O.: Micromechanical model of rough contact between rock blocks with application to wave propagation. Acta Geophys. 56(4), 1109–1128 (2008)

    ADS  Article  Google Scholar 

  70. Misra A., Huang S.: Micromechanics based stress-displacement relationships of rough contacts: numerical implementation under combined normal and shear loading. Comput. Model. Eng. Sci. 52(2), 197–215 (2009)

    MATH  Google Scholar 

  71. Yang Y., Misra A.: Higher-order stress strain theory for damage modeling implemented in an element-free Galerkin formulation. CMES 1549(1), 1–36 (2010)

    MathSciNet  Article  Google Scholar 

  72. Yang Y., Ching W.Y., Misra A.: Higher-order continuum theory applied to fracture simulation of nano-scale intergranular glassy film. J. Nanomech. Micromech. 1(2), 60–71 (2011)

    Article  Google Scholar 

  73. Dell’Isola F., Rosa L., Woźniak C.: A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter. Acta Mech. 127, 165–182 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  74. Sieradzki K., Rinaldi A., Friesen C., Peralta P.: Length scales in crystal plasticity. Acta Mater. 54, 4533–4538 (2006)

    Article  Google Scholar 

  75. Rinaldi A., Peralta P., Friesen C., Sieradzki K.: Sample-size effects in the yield behavior of nanocrystalline nickel. Acta Mater. 56, 511–517 (2008)

    Article  Google Scholar 

  76. Rinaldi A., Peralta P., Friesen C., Chawla N., Traversa E., Sieradzki K.: Localized compression and shear tests on nanotargets with a Berkovich tip and a novel multifunctional tip. J. Mater. Res. 24(3), 768–775 (2009)

    ADS  Article  Google Scholar 

  77. Rinaldi A., Peralta P., Friesen C., Nahar D., Licoccia S., Traversa E., Sieradzki K.: Superhard nanobuttons: constraining crystal plasticity and dealing with extrinsic effects at the nanoscale. Small 6(4), 528–536 (2010)

    Article  Google Scholar 

  78. Rinaldi A., Licoccia S., Traversa E.: Nanomechanics for MEMS: a structural design perspective. Nanoscale 3(3), 811–824 (2011)

    ADS  Article  Google Scholar 

  79. Rinaldi A.: Effects of dislocation density and sample-size on plastic yielding at the nanoscale: a weibull-like framework. Nanoscale 3(11), 4817–4823 (2011)

    ADS  Article  Google Scholar 

  80. Rinaldi, A., Peralta, P., Sieradzki, K., Traversa, E., Liccoccia, S.: Role of dislocation density on the sample-size effect in nanoscale plastic yielding. J. Nanomech. Micromech. (in print). doi:10.1061/(ASCE)NM.2153-5477.0000047

  81. Rinaldi A., Licoccia S., Traversa E., Sieradzki K., Peralta P., Dávila-Ibáñez A.B., Correa-Duarte M.A., Salgueirino V.: Radial inner morphology effects on the mechanical properties of amorphous composite cobalt boride nanoparticles. J. Phys. Chem. C 114(32), 13451–13458 (2010)

    Article  Google Scholar 

  82. Rinaldi A., Correa-Duarte M.A., Salgueirino-Maceira V., Licoccia S., Traversa E., Dávila-Ibáñez A.B., Peralta P., Sieradzki K.: In-situ micro-compression tests of single core-shell nanoparticles. Acta Mater. 58(19), 6474–6486 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rinaldi.

Additional information

Communicated by Francesco dell'Isola and Samuel Forest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rinaldi, A. Bottom-up modeling of damage in heterogeneous quasi-brittle solids. Continuum Mech. Thermodyn. 25, 359–373 (2013). https://doi.org/10.1007/s00161-012-0265-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-012-0265-6

Keywords

  • Lattice models
  • Microstructure
  • Perturbation analysis
  • Damage parameter
  • Statistical damage mechanics
  • Localization
  • Multiscale models
  • Tensile strength
  • Discrete models
  • Elastic model
  • Mean-field