Nemat-Nasser S., Hori M.: Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland, New York (1993)
MATH
Google Scholar
Navier C.L.: Sur les lois de l’equilibre et du mouvement des corps solides elastiques. Memoire de l’Academie Royale de Sciences 7, 375–393 (1827)
Google Scholar
Cauchy, A.-L.: Sur l’equilibre et le mouvement d’un systeme de points materiels sollicites par des forces d’attraction ou de repulsion mutuelle. Excercises de Mathematiques 3, 188–212 (1826–1830)
Arndt M., Griebel M.: Derivation of higher order gradient continuum models from atomistic models for crystalline solids. Multiscale Model. Simulat. 4(2), 531–562 (2005)
MathSciNet
MATH
Article
Google Scholar
Blanc X., Le Bris C., Lions P.L.: From molecular models to continuum mechanics. Comptes Rendus De L Academie Des Sciences Serie I-Mathematique 332(10), 949–956 (2001)
MathSciNet
ADS
MATH
Google Scholar
E W.N., Huang Z.Y.: A dynamic atomistic-continuum method for the simulation of crystalline materials. J. Computat. Phys. 182(1), 234–261 (2002). doi:10.1006/jcph.2002.7164
MathSciNet
ADS
MATH
Article
Google Scholar
Misra A., Yang Y.: Micromechanical model for cohesive materials based upon pseudo-granular structure. Int. J. Solids Struct. 47(21), 2970–2981 (2010). doi:10.1016/j.ijsolstr.2010.07.002
MATH
Article
Google Scholar
Chang C.S., Gao J.: 2nd-gradient constitutive theory for granular material with random packing structure. Int. J. Solids Struct. 32(16), 2279–2293 (1995)
MATH
Article
Google Scholar
Alibert J.J., Seppecher P., Dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003). doi:10.1177/108128603029658
MathSciNet
MATH
Article
Google Scholar
Seppecher P., Alibert J.-J., dell’Isola F.: Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys. Conf. Ser. 319(1), 012018 (2011)
ADS
Article
Google Scholar
dell’Isola F., Vidoli S.: Continuum modelling of piezoelectromechanical truss beams: an application to vibration damping. Arch. Appl. Mech. 68(1), 1–19 (1998)
MathSciNet
ADS
MATH
Article
Google Scholar
Chang C.S., Askes H., Sluys L.J.: Higher-order strain/higher-order stress gradient models derived from a discrete microstructure, with application to fracture. Eng. Fract. Mech. 69(17), 1907–1924 (2002)
Article
Google Scholar
Askes H., Metrikine A.V.: Higher-order continua derived from discrete media: continualisation aspects and boundary conditions. Int. J. Solids Struct. 42(1), 187–202 (2005). doi:10.1016/j.ijsolstr.2004.04.005
MATH
Article
Google Scholar
Yang Y., Ching W.-Y., Misra A.: Higher-order continuum theory applied to fracture simulation of nano-scale intergranular glassy film. J. Nanomech. Micromech. 1(2), 60–71 (2011)
Article
Google Scholar
Murrell J.N., Carter S., Farantos S.C., Huxley P., Varandas A.J.C.: Molecular Potential Energy Functions. Wiley, New York (1984)
Google Scholar
Chang C.S., Misra A.: Packing structure and mechanical-properties of granulates. J. Eng. Mech. Asce 116(5), 1077–1093 (1990)
Article
Google Scholar
Misra A., Chang C.S.: Effective elastic moduli of heterogeneous granular solids. Int. J. Solids Struct. 30(18), 2547–2566 (1993)
MATH
Article
Google Scholar
Triantafyllidis N., Bardenhagen S.: On higher-order gradient continuum-theories in 1-D nonlinear elasticity—derivation from and comparison to the corresponding discrete models. J. Elast. 33(3), 259–293 (1993)
MathSciNet
MATH
Article
Google Scholar
dell’Isola F., Sciarra G., Vidoli S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009). doi:10.1098/rspa.2008.0530
MathSciNet
ADS
MATH
Article
Google Scholar
dell’Isola, F., Seppecher, P.: Hypertractions and hyperstresses convey the same mechanical information. Continuum Mech. Thermodyn. 22, 163–176 (2010) by Prof. Podio Guidugli and Prof. Vianello and some related papers on higher gradient theories. Continuum Mech. Thermodyn. 23(5), 473–478 (2011) doi:10.1007/s00161-010-0176-3
dell’Isola F., Seppecher P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule B-Mecanique Physique Chimie Astronomie 321(8), 303–308 (1995)
MATH
Google Scholar
dell’Isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32(1), 33–52 (1997)
MathSciNet
MATH
Article
Google Scholar
Suiker A.S.J., Chang C.S.: Application of higher-order tensor theory for formulating enhanced continuum models. Acta Mech. 142(1–4), 223–234 (2000)
MATH
Article
Google Scholar
dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach “a la D’Alembert”. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) (2012). doi:10.1007/s00033-012-0197-9
Yang, Y., Misra, A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. (2012). doi:10.1016/j.ijsolstr.2012.05.024
Johnson K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)
MATH
Google Scholar
Chang C.S., Misra A.: Theoretical and experimental-study of regular packings of granules. J. Eng. Mech. Asce 115(4), 704–720 (1989)
Article
Google Scholar
Atanackovic T.M.: A modified Zener model of a viscoelastic body. Continuum Mech. Thermodyn. 14(2), 137–148 (2002). doi:10.1007/s001610100056
MathSciNet
ADS
MATH
Article
Google Scholar
Rajagopal K.R., Srinivasa A.R., Wineman A.S.: On the shear and bending of a degrading polymer beam. Int. J. Plast. 23(9), 1618–1636 (2007). doi:10.1016/j.ijplas.2007.02.007
MATH
Article
Google Scholar
Breuer S., Onat E.T.: On the determination of free energy in linear viscoelastic solids. Zeitschrift für Angewandte Mathematik und Physik 184–191(2), 15 (1964)
Google Scholar
Day W.A.: Reversibility, recoverable work and free energy in linear viscoelasticity. Q. J. Mech. Appl. Math. 23, 1 (1970)
MATH
Article
Google Scholar
Deseri L., Gentili G., Golden M.: An explicit formula for the minimum free energy in linear viscoelasticity. J. Elast. 54, 141–185 (1999)
MathSciNet
MATH
Article
Google Scholar
Deseri L., Golden J.M.: The minimum free energy for continuous spectrum materials. Siam J. Appl. Math. 67(3), 869–892 (2007). doi:10.1137/050639776
MathSciNet
MATH
Article
Google Scholar
Gentili G.: Maximum recoverable work, minimum free energy and state space in linear viscoelasticity. Q. Appl. Math. 60(1), 153–182 (2002)
MathSciNet
MATH
Google Scholar
Del Piero G., Deseri L.: On the concepts of state and free energy in linear viscoelasticity. Arch. Ration. Mech. 138, 1–35 (1997)
MathSciNet
MATH
Article
Google Scholar
Christensen R.M.: Theory of Viscoelasticity: An introduction. Academic Press, New York (1982)
Google Scholar
Darabi M.K., Abu Al-Rub R.K., Masad E.A., Huang C.W., Little D.N.: A thermo-viscoelastic-viscoplastic-viscodamage constitutive model for asphaltic materials. Int. J. Solids Struct. 48(1), 191–207 (2011). doi:10.1016/j.ijsolstr.2010.09.019
MATH
Article
Google Scholar
Zhou X.P., Yang H.Q., Zhang Y.X.: Rate dependent critical strain energy density factor of Huanglong limestone. Theor. Appl. Fract. Mech. 51(1), 57–61 (2009). doi:10.1016/j.tafmec.2009.01.001
Article
Google Scholar
Kuhn M.R., Mitchell J.K.: New perspectives on soil-creep. J. Geotech. Eng. Asce 119(3), 507–524 (1993)
Article
Google Scholar
Lade P.V., Liggio C.D., Nam J.: Strain rate, creep, and stress drop-creep experiments on crushed coral sand. J. Geotech. Geoenviron. Eng. 135(7), 941–953 (2009). doi:10.1061/(Asce)Gt.1943-5606.0000067
Article
Google Scholar
dell’Isola F., Guarascio M., Hutter K.: A variational approach for the deformation of a saturated porous solid: a second-gradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 70, 323–337 (2000)
ADS
MATH
Article
Google Scholar
Dell’Isola F., Hutter K.: What are the dominant thermomechanical processes in the basal sediment layer of large ice sheets?. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 454(1972), 1169–1195 (1998)
MathSciNet
MATH
Article
Google Scholar
dell’Isola F., Rosa L., Wozniak C.: A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter. Acta Mech. 127(1–4), 165–182 (1998)
MathSciNet
MATH
Article
Google Scholar
Sciarra G., dell’Isola F., Hutter K.: A solid-fluid mixture model allowing for solid dilatation under external pressure. Continuum Mech. Thermodyn. 13(5), 287–306 (2001)
MathSciNet
ADS
MATH
Article
Google Scholar
dell’Isola F., Kosinski W.: Deduction of thermodynamic balance laws for bidimensional nonmaterial directed continua modelling interphase layers. Arch. Appl. Mech. 45, 333–359 (1993)
MathSciNet
MATH
Google Scholar
dell’Isola F., Romano A.: On the derivation of thermomechanical balance-equations for continuous systems with a nonmaterial interface. Int. J. Eng. Sci. 25(11–12), 1459–1468 (1987)
MathSciNet
MATH
Article
Google Scholar
dell’Isola F., Romano A.: A phenomenological approach to phase-transition in classical field-theory. Int. J. Eng. Sci. 25(11–12), 1469–1475 (1987)
MathSciNet
MATH
Article
Google Scholar
Misra A., Marangos O.: Effect of contact viscosity and roughness on interface stiffness and wave propagation. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation, vol. 28A, pp. 105–112. AIP, New York (2009)
Google Scholar
Misra A., Huang S.P.: Micromechanical stress-displacement model for rough interfaces: effect of asperity contact orientation on closure and shear behavior. Int. J. Solids Struct. 49(1), 111–120 (2012). doi:10.1016/j.ijsolstr.2011.09.013
Article
Google Scholar
Kanatani K.I.: Distribution of directional-data and fabric tensors. Int. J. Eng. Sci. 22(2), 149–164 (1984)
MathSciNet
MATH
Article
Google Scholar