Skip to main content

Nonlinear sensing of ionic polymer metal composites

Abstract

In this paper, we develop a physics-based model for the charge dynamics of ionic polymer metal composites (IPMCs) in response to mechanical deformations. The proposed chemoelectromechanical model is based on the Poisson–Nernst–Planck system that describes the evolution of the voltage field and the counterion concentration as a dynamic strain is imposed to the IPMC. We use the method of matched asymptotic expansions to find a closed form solution for the Poisson–Nernst–Planck equations and derive an equivalent nonlinear circuit model that is amenable for parametric studies. We report results for a variety of loading scenarios to gather insight into the nonlinear characteristics of IPMC electrical response and their potential application in sensors and energy harvesting devices.

This is a preview of subscription content, access via your institution.

References

  1. Abdelnour, K., Stinchcombe, A., Porfiri, M., Zhang, J., Childress, S.: Wireless powering of ionic polymer metal composites toward hovering microswimmers. IEEE/ASME Trans. Mechatron. (in press). doi:10.1109/TMECH.2011.2148201

  2. Anton M., Aabloo A., Punning A., Kruusmaa M.: A mechanical model of a non-uniform ionomeric polymer metal composite actuator. Smart Mater. Struct. 17(2), 025004 (2008)

    ADS  Article  Google Scholar 

  3. Atheshian G.A.: On the theory of reactive mixtures for modeling biological growth. Biomech. Model. Mechanobiol. 6(6), 423–445 (2007)

    Article  Google Scholar 

  4. Aureli M., Basaran M.E., Porfiri M.: Nonlinear finite amplitude vibrations of sharp-edged beams in viscous fluids. J. Sound Vib. 331(7), 1624–1654 (2012)

    ADS  Article  Google Scholar 

  5. Aureli M., Kopman V., Porfiri M.: Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans. Mechatron. 15(4), 603–614 (2010)

    Article  Google Scholar 

  6. Aureli M., Lin W., Porfiri M.: On the capacitance-boost of ionic polymer metal composites due to electroless plating: theory and experiments. J. Appl. Phys. 105(10), 104911 (2009)

    ADS  Article  Google Scholar 

  7. Aureli M., Prince C., Porfiri M., Peterson S.D.: Energy harvesting from base excitation of ionic polymer metal composites in fluid environments. Smart Mater. Struct. 19(1), 015003 (2010)

    ADS  Article  Google Scholar 

  8. Bahramzadeh Y., Shahinpoor M.: Dynamic curvature sensing employing ionic-polymer-metal composite sensors. Smart Mater. Struct. 20(9), 094011 (2011)

    ADS  Article  Google Scholar 

  9. Bard A.J., Faulkner L.R.: Electrochemical Methods: Fundamentals and Applications. Wiley, Hoboken (2001)

    Google Scholar 

  10. Batra R.C., Porfiri M., Spinello D.: Electromechanical model of electrically actuated narrow microbeams. J. Microelectromech. Syst. 15(5), 1175–1189 (2006)

    Article  Google Scholar 

  11. Batra R.C., Porfiri M., Spinello D.: Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater. Struct. 16(6), R23–R31 (2007)

    ADS  Article  Google Scholar 

  12. Berkenblit S.I., Quinn T.M., Grodzinsky A.J.: Molecular electromechanics of cartilaginous tissues and polyelectrolyte gels. J. Electrostat. 34(2–3), 307–330 (1995)

    Article  Google Scholar 

  13. Biddiss E., Chau T.: Electroactive polymeric sensors in hand prostheses: Bending response of an ionic polymer metal composite. Med. Eng. Phys. 28(6), 568–578 (2006)

    Article  Google Scholar 

  14. Bonomo C., Brunetto P., Fortuna L., Giannone P., Graziani S., Strazzeri S.: A tactile sensor for biomedical applications based on IPMCs. IEEE Sens. J. 8(7–8), 1486–1493 (2008)

    Article  Google Scholar 

  15. Bonomo, C., Del~Negro, C., Fortuna, L., Graziani, S.: Characterization of IPMC strip sensorial properties: preliminary results. In: Proceedings of the 2003 International Symposium on Circuits and Systems, vol.~4, pp. 816–819. Bangkok, Thailand (2003)

  16. Bonomo C., Fortuna L., Giannone P., Graziani S.: A method to characterize the deformation of an IPMC sensing membrane. Sens. Actuator A 123(124), 146–154 (2005)

    Article  Google Scholar 

  17. Bonomo C., Fortuna L., Giannone P., Graziani S., Strazzeri S.: A model for ionic polymer metal composites as sensors. Smart Mater. Struct. 15(3), 749–758 (2006)

    ADS  Article  Google Scholar 

  18. Bonomo C., Fortuna L., Giannone P., Graziani S., Strazzeri S.: A nonlinear model for ionic polymer metal composites as actuators. Smart Mater. Struct. 16(1), 1–12 (2007)

    ADS  Article  Google Scholar 

  19. Bonomo C., Fortuna L., Giannone P., Graziani S., Strazzeri S.: A resonant force sensor based on ionic polymer metal composites. Smart Mater. Struct. 17(1), 015014 (2008)

    ADS  Article  Google Scholar 

  20. Brufau-Penella J., Puig-Vidal M., Giannone P., Graziani S., Strazzeri S.: Characterization of the harvesting capabilities of an ionic polymer metal composite device. Smart Mater. Struct. 17(1), 015009 (2008)

    ADS  Article  Google Scholar 

  21. Brunetto P., Fortuna L., Giannone P., Graziani S., Pagano F.: A resonant vibrating tactile probe for biomedical applications based on IPMC. IEEE Trans. Instrumen. Meas. 59(5), 1453–1462 (2010)

    Article  Google Scholar 

  22. Brunetto P., Fortuna L., Graziani S., Strazzeri S.: A model of ionic polymer-metal composite actuators in underwater operations. Smart Mater. Struct. 17(2), 025029 (2008)

    ADS  Article  Google Scholar 

  23. Buechler M.A., Leo D.J.: Characterization and variational modeling of ionic polymer transducers. J. Vib. Acoust. 129(1), 113–120 (2007)

    Article  Google Scholar 

  24. Chen Z., Hedgepeth D., Tan X.: A nonlinear, control-oriented model for ionic polymer-metal composite actuators. Smart Mater. Struct. 18(5), 055008 (2009)

    ADS  Article  Google Scholar 

  25. Chen Z., Shatara S., Tan X.: Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite caudal fin. IEEE/ASME Trans. Mechatron. 15(3), 448–459 (2010)

    Article  Google Scholar 

  26. Chen Z., Tan X.: A control-oriented and physics-based model for ionic polymer-metal composite actuators. IEEE/ASME Trans. Mechatron. 13(5), 519–529 (2008)

    MathSciNet  Article  Google Scholar 

  27. Chen Z., Tan X., Will A., Ziel C.: A dynamic model for ionic polymer-metal composite sensors. Smart Mater. Struct. 16(4), 1477–1488 (2007)

    ADS  Article  Google Scholar 

  28. Chen Z., Um T.I., Bart-Smith H.: A novel fabrication of ionic polymer-metal composite membrane actuator capable of 3-dimensional kinematic motions. Sens. Actuators A: Phys. 168(1), 131–139 (2011)

    Article  Google Scholar 

  29. Costa~Branco P.J., Dente J.A.: Derivation of a continuum model and its electric equivalent-circuit representation for ionic polymer-metal composite (IPMC) electromechanics. Smart Mater. Struct. 15(2), 378–392 (2006)

    ADS  Article  Google Scholar 

  30. Davidson J.D., Goulbourne N.C.: Boundary layer charge dynamics in ionic liquid-ionic polymer transducers. J. Appl. Phys. 109, 014909 (2011)

    ADS  Article  Google Scholar 

  31. Davidson J.D., Goulbourne N.C.: Nonlinear capacitance and electrochemical response of ionic liquid-ionic polymers. J. Appl. Phys. 109, 084901 (2011)

    ADS  Article  Google Scholar 

  32. Del~Bufalo G., Placidi L., Porfiri M.: A mixture theory framework for modeling mechanical actuation of ionic polymer metal composites. Smart Mater. Struct. 17(4), 045010 (2008)

    ADS  Article  Google Scholar 

  33. Deole U., Lumia R., Shahinpoor M., Bermudez M.: Design and test of IPMC artificial muscle microgripper. J. Micro-Nano Mechatron. 4(3), 1865–3936 (2008)

    Google Scholar 

  34. Environmental Robots, Inc. : (2011).http://www.environmental-robots.com

  35. Fang B.K., Ju M.S., Lin C.C.K.: A new approach to develop ionic polymer-metal composites (IPMC) actuator: Fabrication and control for active catheter systems. Sens. Actuators A: Phys. 137(2), 321–329 (2007)

    Article  Google Scholar 

  36. Farinholt K., Leo D.J.: Modeling of electromechanical charge sensing in ionic polymer transducers. Mech. Mater. 36(5), 421–433 (2004)

    Article  Google Scholar 

  37. Farinholt K.M., Pedrazas N.A., Schluneker D.M., Burt D.W., Farrar C.R.: An energy harvesting comparison of piezoelectric and ionically conductive polymers. J. Intell. Mater. Syst. Struct. 20(5), 633–642 (2009)

    Article  Google Scholar 

  38. de~Gennes P.G., Okumura K., Shahinpoor M., Kim K.J.: Mechanoelectric effects in ionic gels. Europhys. Lett. 50(4), 513–518 (2000)

    ADS  Article  Google Scholar 

  39. Giacomello A., Porfiri M.: Underwater energy harvesting from a heavy flag hosting ionic polymer metal composites. J. Appl. Phys. 109(8), 084903 (2011)

    ADS  Article  Google Scholar 

  40. Grodzinsky A.J., Lipshitz H., Glimcher M.J.: Electromechanical properties of articular cartilage during compression and stress relaxation. Nature 275, 448–450 (1978)

    ADS  Article  Google Scholar 

  41. Guo S., Fukuda T., Asaka K.: A new type of fish-like underwater microrobot. IEEE/ASME Trans. Mechatron. 8(1), 118–129 (2003)

    Google Scholar 

  42. Gurtin M.E., Fried E., Anand L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, New York (2010)

    Book  Google Scholar 

  43. Gutta S., Lee J.S., Trabia M.B., Yim W.: Modeling of ionic polymer metal composite actuator dynamics using a large deflection beam model. Smart Mater. Struct. 18(11), 115023 (2009)

    ADS  Article  Google Scholar 

  44. Hong W., Zhao X., Suo Z.: Large deformation and electrochemistry of polyelectrolyte gels. J. Mech. Phys. Solids 58(4), 558–577 (2010)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  45. Kanno, R., Tadokoro, S., Takamori, T., Hattori, M.: Linear approximate dynamic model of ICPF actuator. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol.~1, pp. 219–225. Minneapolis, MN (1996)

  46. Kim B., Kim D.H., Jung J., Park J.O.: A biomimetic undulatory tadpole robot using ionic polymer-metal composite actuators. Smart Mater. Struct. 14(6), 1579–1585 (2005)

    ADS  Article  Google Scholar 

  47. Kim K.J., Shahinpoor M.: Ionic polymer-metal composites: II. Manufacturing techniques. Smart Mater. Struct. 12(1), 65–79 (2003)

    ADS  Article  Google Scholar 

  48. Konyo, M., Konishi, Y., Tadokoro, S., Kishima, T.: Development of velocity sensor using ionic polymer-metal composites. In: Proceedings of SPIE Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD), vol. 5385, p. 307. San Diego, CA (2004)

  49. Kruusamäe K., Brunetto P., Graziani S., Punning A., Di~Pasquale G., Aabloo A.: Self-sensing ionic polymer-metal composite actuating device with patterned surface electrodes. Polymer Int. 59(3), 300–304 (2010)

    Article  Google Scholar 

  50. Lee S., Park H.C., Kim K.J.: Equivalent modeling for ionic polymer-metal composite actuators based on beam theories. Smart Mater. Struct. 14(6), 1363–1368 (2005)

    ADS  Article  Google Scholar 

  51. Lim J., Whitcomb J., Boyd J., Varghese J.: Transient finite element analysis of electric double layer using Nernst-Planck-Poisson equations with a modified Stern layer. J. Colloid Interface Sci. 305(1), 159–174 (2007)

    Article  Google Scholar 

  52. Mojarrad, M., Shahinpoor, M.: Noiseless propulsion for swimming robotic structures using polyelectrolyte ion-exchange membranes. In: Proceedings of the SPIE 1996 North American Conference on Smart Structures and Materials, vol. 2716. San Diego, CA (1996)

  53. Mura T., Koya T.: Variational Methods in Mechanics. Oxford University Press, New York (1992)

    MATH  Google Scholar 

  54. Nayfeh A.H.: Introduction to Perturbation Techniques. Wiley-Interscience, New York (1981)

    MATH  Google Scholar 

  55. Nemat-Nasser S.: Micromechanics of actuation of ionic polymer-metal composites. J. Appl. Phys. 92, 2899–2915 (2002)

    ADS  Article  Google Scholar 

  56. Nemat-Nasser S., Li J.Y.: Electromechanical response of ionic polymer-metal composites. J. Appl. Phys. 87, 3321–3331 (2000)

    ADS  Article  Google Scholar 

  57. Newbury K., Leo D.J.: Linear electromechanical model of ionic polymer transducers-part I: model development. J. Intell. Mater. Syst. Struct. 14(6), 333–342 (2003)

    Article  Google Scholar 

  58. Newbury K., Leo D.J.: Linear electromechanical model of ionic polymer transducers-part II: experimental validation. J. Intell. Mater. Syst. Struct. 14(6), 343–357 (2003)

    Article  Google Scholar 

  59. Park I.S., Kim S.M., Pugal D., Huang L., Tam-Chang S.W., Kim K.J.: Visualization of the cation migration in ionic polymer-metal composite under an electric field. Appl. Phys. Lett. 96(4), 043301 (2010)

    ADS  Article  Google Scholar 

  60. Peterson S.D., Porfiri M.: Energy exchange between a vortex ring and an ionic polymer metal composite. Appl. Phys. Lett. 100(11), 114102 (2012)

    ADS  Article  Google Scholar 

  61. Porfiri M.: Charge dynamics in ionic polymer metal composites. J. Appl. Phys. 104(10), 104915 (2008)

    MathSciNet  ADS  Article  Google Scholar 

  62. Porfiri M.: An electromechanical model for sensing and actuation of ionic polymer metal composites. Smart Mater. Struct. 18(1), 015016 (2009)

    Article  Google Scholar 

  63. Porfiri M.: Influence of electrode surface roughness and steric effects on the nonlinear electromechanical behavior of ionic polymer metal composites. Phys. Rev. E 79(4), 041503 (2009)

    ADS  Article  Google Scholar 

  64. Preethichandra, D.M.G., Kaneto, K.: An easy fabrication method for artificial muscles and bending curvature sensors using ionic polymer metal composites. In: Proceedings of the First International Conference on Industrial and Information Systems, pp. 227–230. Sri Lanka (2006)

  65. Prince C., Lin W., Lin J., Peterson S.D., Porfiri M.: Temporally-resolved hydrodynamics in the vicinity of a vibrating ionic polymer metal composite. J. Appl. Phys. 107(9), 094908 (2010)

    ADS  Article  Google Scholar 

  66. Pugal D., Jung K., Aabloo A., Kim K.J.: Ionic polymer-metal composite mechanoelectrical transduction: review and perspectives. Polymer Int. 59(3), 279–289 (2010)

    Article  Google Scholar 

  67. Reddy J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, 2nd edn. Boca Raton (2004)

    MATH  Google Scholar 

  68. Shahinpoor M.: Ionic polymer-conductor composites as biomimetic sensors, robotic actuators and artificial muscles—a review. Electrochimica Acta 48(14–16), 2343–2353 (2003)

    Article  Google Scholar 

  69. Shahinpoor M., Bar-Cohen Y., Simpson J.O., Smith J.: Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review. Smart Mater. Struct. 7(6), R15–R30 (1998)

    ADS  Article  Google Scholar 

  70. Shahinpoor M., Kim K.J.: Ionic polymer-metal composites: I. Fundamentals. Smart Mater. Struct. 10(4), 819–833 (2001)

    ADS  Article  Google Scholar 

  71. Shahinpoor M., Kim K.J.: Ionic polymer-metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Mater. Struct. 13(6), 1362–1388 (2004)

    ADS  Article  Google Scholar 

  72. Shahinpoor M., Kim K.J.: Ionic polymer-metal composites: IV. Industrial and medical applications. Smart Mater. Struct. 14(1), 197–214 (2005)

    ADS  Article  Google Scholar 

  73. Suo Z.: Theory of dielectric elastomers. Acta Mechanica Solida Sinica 23(6), 549–578 (2010)

    Google Scholar 

  74. Suo Z., Zhao X., Greene W.H.: A nonlinear field theory of deformable dielectrics. J. Mech. Phys. Solids 56, 467–486 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  75. Timoshenko S.P., Gere J.M.: Theory of Elastic Stability. Dover, New York (2009)

    Google Scholar 

  76. Timoshenko S.P., Goodier J.N.: Theory of Elasticity. 3rd edn McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  77. Tiwari R., Kim K.J., Kim S.M.: Ionic polymer-metal composite as energy harvesters. Smart Struct. Syst. 4(5), 549–563 (2008)

    Google Scholar 

  78. Wallmersperger T., Akle B.J., Leo D.J., Kröplin B.: Electrochemical response in ionic polymer transducers: an experimental and theoretical study. Compos. Sci. Technol. 68(5), 1173–1180 (2008)

    Article  Google Scholar 

  79. Wallmersperger T., Kröplin B., Gülch R.W.: Coupled chemo-electro-mechanical formulation for ionic polymer gels-numerical and experimental investigations. Mech. Mater. 36(5–6), 411–420 (2004)

    Article  Google Scholar 

  80. Wallmersperger T., Leo D.J., Kothera C.S.: Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J. Appl. Phys. 101(2), 024912 (2007)

    ADS  Article  Google Scholar 

  81. Yagasaki K., Tamagawa H.: Experimental estimate of viscoelastic properties for ionic polymer-metal composites. Phys. Rev. E 70, 052801 (2004)

    ADS  Article  Google Scholar 

  82. Yeom S.W., Oh I.K.: A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater. Struct. 18(8), 085002 (2009)

    ADS  Article  Google Scholar 

  83. Zangrilli U., Weiland L.M.: Prediction of the ionic polymer transducer sensing of shear loading. Smart Mater. Struct. 20(9), 094013 (2011)

    ADS  Article  Google Scholar 

  84. Zienkiewicz O.C., Taylor R.L., Zhu J.Z.: The Finite Element Method: Its Basis and Fundamentals. 6th edn Elsevier Butterworth-Heinemann, New York (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Porfiri.

Additional information

Communicated by Francesco dell'Isola and Samuel Forest.

This material is based upon work supported in part by the National Science Foundation under Grant Nos. CMMI-0745753 and CMMI-0926791 and in part by New York University SEED funding.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aureli, M., Porfiri, M. Nonlinear sensing of ionic polymer metal composites. Continuum Mech. Thermodyn. 25, 273–310 (2013). https://doi.org/10.1007/s00161-012-0253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-012-0253-x

Keywords

  • Double-layer capacitance
  • Finite element analysis
  • Ionic polymer metal composite
  • Matched asymptotic expansion
  • Poisson–Nernst–Planck
  • Sensor