Skip to main content
Log in

Performance analysis and parametric optimum criteria of an irreversible macro/nano thermosize engine

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We have established an irreversible macro/nano thermosize engine cycle model. A possibly new thermodynamic power cycle based on thermosize effects is analyzed. Expressions for some important parameters, such as the power output and efficiency are derived. Some fundamental optimal relations and general performance characteristic curves of the cycle are obtained. Furthermore, the efficiency at maximum power output of the macro/nano thermosize engine, performing finite time cycles, in which the time of regenerative processes and dissipation are considered. The results obtained here will provide theoretical guidance for the design some new macro/nano scaled devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goddard W.A., Brenner D.W., Lyshevski S.E., Iafrate G.J.: Handbook of Nanoscience, Engineering, and Technology. CRC Press, Boca Raton (2003)

    Google Scholar 

  2. Wolf E.L.: Nanophysics and Nanotechnology. Wiley, Weinheim (2006)

    Book  Google Scholar 

  3. Kang J.W., Hwang H.J.: Nanoscale carbon nanotube motor schematics and simulations for micro electro-mechanical machines. Nanotechnology 15, 1633–1638 (2004)

    Article  ADS  Google Scholar 

  4. Li Z., Ling H.: On the Knudsen transport of gases in nanochannels. J. Chem. Phys. 127, 074706 (2007)

    Article  ADS  Google Scholar 

  5. Schöll E.: Theory of Transport Properties of Semiconductor Nanostructures. Chapman & Hall, London (1998)

    Book  Google Scholar 

  6. Roldughin V.I., Zhdanov M.V.: Effect of surface forces on the gas flowin nanosized capillaries. Colloid J. 65, 598–601 (2003)

    Article  Google Scholar 

  7. Skoulidas A.I., Ackerman D.M., Johnson J.K., Sholl D.S.: Rapid transport of gases in carbon nanotubes. Phys. Rev. Lett. 89, 185901 (2002)

    Article  ADS  Google Scholar 

  8. Sisman A.: Surface dependency in thermodynamics of ideal gases. J. Phys. A Math. Gen. 37, 11353 (2004)

    Article  ADS  MATH  Google Scholar 

  9. Sisman A., Muller I.: The Casimir-like size effects in ideal gases. Phys. Lett. A 320, 360–366 (2004)

    Article  ADS  Google Scholar 

  10. Dai W.S., Xie M.: Geometry effects in confined space. Phys. Rev. E 70, 016103 (2004)

    Article  ADS  Google Scholar 

  11. Pathria R.K.: An ideal quantum gas in a finite-sized container. Am. J. Phys. 66, 1080 (1998)

    Article  ADS  Google Scholar 

  12. Wang H., Wu G., Chen X.: Thermosize effects and thermodynamic analysis of a macro/nano scaled refrigerator cycle. J. Appl. Phys. 111, 024312 (2012)

    Article  ADS  Google Scholar 

  13. Zhou X.W., Jones R.E., Aubry S.: Analytical law for size effects on thermal conductivity of nanostructures. Phys. Rev. B 81, 073304 (2010)

    Article  ADS  Google Scholar 

  14. Dai W.S., Xie M.: Quantum statistics of ideal gases in confined space. Phys. Lett. A 311, 340–346 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Sisman A., Ozturk Z.F., Firat C.: Surface dependence in thermodynamics of ideal gases. Phys. Lett. A 362, 16 (2007)

    Article  ADS  Google Scholar 

  16. Dai W.S., Xie M.: Interacting quantum gases in confined space: two- and three-dimensional equations of state. J. Math. Phys. 48, 123302 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  17. Pang H., Dai W.S., Xie M.: The difference of boundary effects between Bose and fermi systems. J. Phys. A Math. Gen. 39, 2563 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Su G., Chen L., Lin T., Chen J.: Thermosize effects of ideal fermi gases confined in micro/nano-scale tubes. J. Low Temp. Phys. 163, 275–283 (2011)

    Article  ADS  Google Scholar 

  19. Salamen P., Nitzan A.: Finite-time optimizations of a Newton’s law Carnot cycle. J. Chem. Phys. 74, 3546 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  20. Chen J., Yan Z.: Unified description of endoreversible cycles. Phys. Rev. A 39, 4140 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  21. Chen J.: The maximum power output and maximum efficiency of an irreversible Carnot heat engine. J. Phys. D Appl. Phys. 27, 1144 (1994)

    Article  ADS  Google Scholar 

  22. Chen J., Yan Z.: The effect of thermal resistances and regenerative losses on the performance characteristics of a magnetic Ericsson refrigeration cycle. J. Appl. Phys. 84, 1791 (1998)

    Article  ADS  Google Scholar 

  23. Esposito M., Kawai R., Lindenberg K., Vanden Broeck C.: Efficiency at maximum power of low dissipation Carnot engines. Phys. Rev. Lett. 105, 150603 (2010)

    Article  ADS  Google Scholar 

  24. Sánchez-Salas N., López-Palacios L., Velasco S., Hernández A.C.: Optimization criteria, bounds, and efficiencies of heat engines. Phys. Rev. E 82, 051101 (2010)

    Article  ADS  Google Scholar 

  25. Wang Y., Tu Z.C.: Efficiency at maximum power output of linear irreversible Carnot-like heat engines. Phys. Rev. E 85, 011127 (2012)

    Article  ADS  Google Scholar 

  26. Yan H., Guo H.: Efficiency and its bounds for thermal engines at maximum power using Newton’s law of cooling. Phys. Rev. E 85, 011146 (2012)

    Article  ADS  Google Scholar 

  27. De Tomás C., Calvo Hernández A., Roco J.M.M.: Optimal low symmetric dissipation Carnot engines and refrigerators. Phys. Rev. E 85, 010104 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Wu, G., Chen, X. et al. Performance analysis and parametric optimum criteria of an irreversible macro/nano thermosize engine. Continuum Mech. Thermodyn. 25, 43–53 (2013). https://doi.org/10.1007/s00161-012-0247-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-012-0247-8

Keywords

Navigation