Skip to main content

Fracture and debonding of a thin film on a stiff substrate: analytical and numerical solutions of a one-dimensional variational model

Abstract

We study multi-fissuration and debonding phenomena of a thin film bonded to a stiff substrate using the variational approach to fracture mechanics. We consider a reduced one-dimensional membrane model where the loading is introduced through uniform inelastic (e.g., thermal) strains in the film or imposed displacements of the substrate. Fracture phenomena are accounted for by adopting a Griffith model for debonding and transverse fracture. On the basis of energy minimization arguments, we recover the key qualitative properties of the experimental evidences, like the periodicity of transverse cracks and the peripheral debonding of each regular segment. Phase diagrams relate the maximum number of transverse cracks that may be created before debonding takes place, as a function of the material properties and the sample’s geometry. The theoretical results are illustrated with numerical simulations obtained through a finite element discretization and a regularized variational formulation of the Ambrosio–Tortorelli type, which is suited to further extensions in two-dimensional settings.

This is a preview of subscription content, access via your institution.

References

  1. Hutchinson J.W., Suo Z.: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63–191 (1992)

    MATH  Article  Google Scholar 

  2. Timm D.: Prediction of thermal crack spacing. Int. J. Solids Struct. 40(1), 125–142 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  3. Lazarus V., Pauchard L.: From craquelures to spiral crack patterns: influence of layer thickness on the crack patterns induced by desiccation. Soft Matter 7(6), 2552 (2011)

    ADS  Article  Google Scholar 

  4. Hsueh C.H.: Analyses of multiple film cracking in film/substrate systems. Ceramics 84(12), 2955–2961 (2001)

    Article  Google Scholar 

  5. Zhang T.Y., Zhao M.H.: Equilibrium depth and spacing of cracks in a tensile residual stressed thin film deposited on a brittle substrate. Eng. Fract. Mech. 69, 589–596 (2002)

    Article  Google Scholar 

  6. Bialas M., Mroz Z.: Crack patterns in thin layers under temperature loading. Part I: monotonic loading. Eng. Fract. Mech. 73(7), 917–938 (2006)

    Article  Google Scholar 

  7. Bialas M., Mroz Z.: An energy model of segmentation cracking of thin films. Mech. Mater. 39(9), 845–864 (2007)

    Article  Google Scholar 

  8. Hsueh C.H., Yanaka M.: Multiple film cracking in film/substrate systems with residual stresses and unidirectional loading. J. Mater. Sci. 38, 1809–1817 (2003)

    ADS  Article  Google Scholar 

  9. Kim S.: Fracture mechanics analysis of coating/substrate systems. Part I: analysis of tensile and bending experiments. Eng. Fract. Mech. 65(5), 573–593 (2000)

    Article  Google Scholar 

  10. Xia Z.C., Hutchinson J.W.: Crack patterns in thin films. J. Mech. Phys. Solids 48, 1107–1131 (2000)

    ADS  MATH  Article  Google Scholar 

  11. Francfort G.A., Marigo J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  12. Bourdin B., Francfort G., Marigo J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  13. Bourdin B., Francfort G., Marigo J.J.: The variational approach to fracture. J. Elast. 91(1–3), 1–148 (2008)

    MathSciNet  Google Scholar 

  14. Del Piero G., Owen D.R.: Structured deformations of continua. Arch. Ration. Mech. Anal. 124, 99–155 (1993)

    MathSciNet  MATH  Article  Google Scholar 

  15. Del Piero G., Truskinovsky L.: Macro- and micro-cracking in one-dimensional elasticity. Int. Jo. Solids Struct. 38, 1135–1148 (2001)

    MATH  Article  Google Scholar 

  16. Del Piero G., Truskinovsky L.: Elastic bars with cohesive energy. Continuum Mech. Thermodyn. 21(2), 141–171 (2009)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  17. Lancioni G., Royer-Carfagni G.: The variational approach to fracture mechanics. A practical application to the French Panthéon in Paris. J. Elast. 95, 1–30 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  18. Mielke, A.: Evolution of rate-independent systems. In: Evolutionary Equations, Handbook of Differential Equations, vol. II, pp. 461–559. Elsevier/North-Holland, Amsterdam (2005)

  19. Ambrosio L., Tortorelli V.M.: Approximation of functional depending on jumps by elliptic functional via Γ-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    MathSciNet  MATH  Article  Google Scholar 

  20. Ambrosio L., Tortorelli V.: On the approximation of free discontinuity problems. Bollettino della Unione Matematica Italiana. Serie VIII. Sezione B 6(1), 105–123 (1992)

    MathSciNet  MATH  Google Scholar 

  21. Nguyen Q.S.: Stability and Nonlinear Solid Mechanics. Wiley, London (2000)

    Google Scholar 

  22. Nagl M.M., Saunders S.R.J., Evans W.T., Hall D.J.: The tensile failure of nickel oxide scales at ambient and at growth temperature. Corros. Sci. 35, 965–977 (1993)

    Article  Google Scholar 

  23. Marigo J.J., Truskinovsky L.: Initiation and propagation of fracture in the models of Griffith and Barenblatt. Continuum Mech. Thermodyn. 16(4), 391–409 (2004)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  24. Braides, A.: Approximation of free-discontinuity problems. In: Lecture Notes in Mathematics, vol. 1694. Springer (1998)

  25. Giacomini A.: Ambrosio–Tortorelli approximation of quasi-static evolution of brittle fractures. Calc. Var. Partial Differ. Equ. 22(2), 129–172 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  26. Pham K., Amor H., Marigo J.J., Maurini C.: Gradient damage models and their use to approximate brittle fracture. Int. J. Damage Mech. 20(4, SI), 618–652 (2011)

    Article  Google Scholar 

  27. Bourdin B.: Numerical implementation of the variational formulation of quasi-static brittle fracture. Interfaces Free Boundaries 9, 411–430 (2007)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Maurini.

Additional information

Communicated by Francesco dell'Isola and Samuel Forest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

León Baldelli, A.A., Bourdin, B., Marigo, JJ. et al. Fracture and debonding of a thin film on a stiff substrate: analytical and numerical solutions of a one-dimensional variational model. Continuum Mech. Thermodyn. 25, 243–268 (2013). https://doi.org/10.1007/s00161-012-0245-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-012-0245-x

Keywords

  • Variational approach
  • Thin films
  • Fracture
  • Delamination
  • Energy minimization