Skip to main content

Shape recovery behaviour of NiTi strips in bending: experiments and modelling

Abstract

We present a theoretical and experimental investigation of the bending recovery performances for a commercial NiTi shape memory alloy strip. We evaluate the mechanical properties and the shape setting parameters and estimate the evolution of the curvature during heating in an Ethylene Glycol-based water solution. To model the strip bending response, we use a one-dimensional phenomenological constitutive equation for the shape memory material, based on the introduction of (twinned and detwinned) martensite and austenite volume fractions as internal variables. Under the assumption of uniform bending, we calculate a quasi-closed-form solution for the stress and martensite fraction distributions in a shape memory beam during bending and subsequent shape recovery. Using our characterisation data as input parameters of the model, we find that the theoretical curvature evolution is in good agreement with experimental data.

This is a preview of subscription content, access via your institution.

References

  1. Auricchio, F., Faravelli, L., Magonette, G., Torra, V., (eds.): Shape Memory Alloys, Advances in Modelling and Applications. CIMNE, Barcelona (2001)

  2. Auricchio F., Fugazza D., Desroches R.: Rate-dependent thermo-mechanical modelling of superelastic shape-memory alloys for seismic applications. J. Intell. Mater. Syst. Struct. 19(1), 47–61 (2008)

    Article  Google Scholar 

  3. Auricchio F., Lubliner J.: An uniaxial model for shape-memory alloys. Int. J. Solids Struct. 34(27), 3601–3618 (1997)

    MATH  Article  Google Scholar 

  4. Auricchio F., Marfia S., Sacco E.: Modelling of SMA materials: training and two way memory effects. Comput. Struct. 81(24–25), 2301–2317 (2003)

    Article  Google Scholar 

  5. Auricchio F., Reali A., Stefanelli U.: A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties. Comput. Methods Appl. Mech. Eng. 198, 1631–1637 (2009)

    MathSciNet  MATH  Article  ADS  Google Scholar 

  6. Auricchio F., Sacco E.: A superelastic shape-memory-alloy-beam model. J. Intell. Mater. Syst. Struct. 8(6), 489–501 (1997)

    Article  Google Scholar 

  7. Auricchio F., Taylor R.L., Lubliner J.: Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Comput. Methods Appl. Mech. Eng. 146, 281–312 (1997)

    MATH  Article  ADS  Google Scholar 

  8. Baz A., Chen T., Ro J.: Shape control of Nitinol-reinforced composite beams. Compos. Part B Eng. 31(8), 631–642 (2000)

    Article  Google Scholar 

  9. Brinson L.: One dimensional constitutive behaviour of shape memory alloys: thermo-mechanical derivation with non-constant functions and redefined martensite internal variable. J. Intell. Mater. Syst. Struct. 4(2), 229–242 (1993)

    Article  Google Scholar 

  10. Christ D., Reese S.: A finite element model for shape memory alloys considering thermomechanical couplings at large strains. Int. J. Solids Struct. 46(20), 3694–3709 (2009)

    MATH  Article  Google Scholar 

  11. Irzhak A., Kalashnikov V., Koledov V., Kuchin D., Lebedev G., Lega P., Pikhtin N., Tarasov I., Shavrov V., Shelyakov A.: Giant reversible deformations in a shape-memory composite material. Tech. Phys. Lett. 36(4), 329–332 (2010)

    Article  ADS  Google Scholar 

  12. Khandelwal A., Buravalla V.: Models for shape memory alloy behavior: an overview of modeling approaches. Int. J. Struct. Changes Solids Mech. Appl. 1(1), 1–30 (2009)

    Google Scholar 

  13. Kirindi T., Sari U., Dikici M.: The effects of pre-strain, recovery temperature, and bending deformation on shape memory effect in an Fe–Mn–Si–Cr–Ni alloy. J. Alloy. Compd. 475(1–2), 145–150 (2009)

    Article  Google Scholar 

  14. Kohl M., Dittmann D., Quandt E., Winzek B., Miyazaki S., Allen D.: Shape memory microvalves based on thin films or rolled sheets. Mater. Sci. Eng. A 273-275, 784–788 (1999)

    Article  Google Scholar 

  15. Lagoudas D.: Shape Memory Alloys: Modeling and Engineering Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  16. Lagoudas D., Bo Z.: The cylindrical bending of composite plates with piezoelectric and SMA layers. Smart Mater. Struct. 3(3), 309–317 (1994)

    Article  ADS  Google Scholar 

  17. Lahoz R., Gracia-Villa L., Puértolas J.: Training of the two-way shape memory effect by bending in NiTi alloys. J. Eng. Mater. Tech. 124(4), 397–401 (2002)

    Article  Google Scholar 

  18. Marfia S.: Micro-macro analysis of shape memory alloy composites. Int. J. Solids Struct. 42(13), 3677–3699 (2005)

    MATH  Article  Google Scholar 

  19. Marfia S., Sacco E.: Micromechanics and homogenization of SMA-wire-reinforced materials. J. Appl. Mech. 72(2), 259–269 (2005)

    MATH  Article  ADS  Google Scholar 

  20. Meng X., Cai W., Zheng Y., Rao Y., Zhao L.: Two-way shape memory effect induced by martensite deformation and stabilization of martensite in Ti 36 Ni 49 Hf 15 high temperature shape memory alloy. Mater. Lett. 57(26–27), 4206–4211 (2003)

    Article  Google Scholar 

  21. Merlin, M.: Using NiTi shape memory alloy wires for the geometry active control in a cooling fan. In: Proceedings of AGS’08—Advances in Geomaterials and Structures, vol. 1. Hammamet, Tunisia, May 5–7, 2008 (2008)

  22. Merlin, M., Rizzoni, R.: Design of a polymeric prototype with variable geometry controlled by shape-memory strips. In: Proceedings of AGS’10—Advances in Geomaterials and Structures. Djerba, Tunisia, May 10–12, 2010 (2010)

  23. Paiva, A., Savi, M.A.: An overview of constitutive models for shape memory alloys. Mathematical Problems in Engineering, pp. 1–30 (2006)

  24. Raniecki B., Rejzner J., Lexcellent C.: Anatomization of hysteresis loops in pure bending of ideal pseudoelastic SMA beams. Int. J. Mech. Sci. 43(5), 1339–1368 (2001)

    MATH  Article  Google Scholar 

  25. Roh J., Bae J.: Thermomechanical behavior of Ni-Ti shape memory alloy ribbons and their numerical modeling. Mech. Mater. 42(8), 757–773 (2010)

    Article  Google Scholar 

  26. S˘ittner P., Vokoun D., Dayananda G.N., Stalmans R.: Recovery stress generation in shape memory Ti 50 Ni 45 Cu 5. Mater. Sci. Eng. A 286(2), 298–311 (2000)

    Article  Google Scholar 

  27. Smith N.A., Antoun G.G., Ellis A.B., Crone W.C.: Improved adhesion between nickel-titanium shape memory alloy and a polymer matrix via silane coupling agents. Compos. Part A 35, 1307–1312 (2004)

    Article  Google Scholar 

  28. Tsoi K.A., Schrooten J., Zheng Y., Stalmans R.: Thermomechanical characteristics of shape memory alloy composites. Mater. Sci. Eng. A 368(1–2), 299–310 (2004)

    Google Scholar 

  29. Tsoi K.A., Stalmans R., Schrooten J.: Transformational behaviour of constrained shape memory alloys. Acta Materialia 50(14), 3535–3544 (2002)

    Article  Google Scholar 

  30. Winzek, B., Sterzl, T., Quandt, E.: Bistable thin film composites with TiHfNi shape memory alloys. In: Proceedings of the International Conference Transducers ’01/Eurosensors XV, vol. 1, pp. 706–709. München, Germany (2001)

  31. Zheng Y., Cui L., Li Y., Yang D.: Separation of the martensite in TiNi fiber reinforced aluminum matrix composite. J. Mater. Sci. Technol. 20(4), 390–394 (2004)

    Google Scholar 

  32. Zhou G., Lloyd P.: Design, manufacture and evaluation of bending behavior of composite beams embedded with SMA wires. Compos. Sci. Technol. 69(13), 2034–2041 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Rizzoni.

Additional information

Communicated by Francesco dell'Isola and Samuel Forest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rizzoni, R., Merlin, M. & Casari, D. Shape recovery behaviour of NiTi strips in bending: experiments and modelling. Continuum Mech. Thermodyn. 25, 207–227 (2013). https://doi.org/10.1007/s00161-012-0242-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-012-0242-0

Keywords

  • Shape memory effect
  • Bending
  • Heat treatment