Alexander H.: Tensile instability of initially spherical balloons. Int. J. Eng. Sci. 9, 151–162 (1971)
Article
Google Scholar
Batra R.C.: Instabilities in biaxially loaded rectangular membranes and spherical balloons made of compressible isotropic hyperelastic materials. Math. Mech. Sol. 10, 471–485 (2005)
MathSciNet
MATH
Article
Google Scholar
Beatty F.M., Johnson M.A.: The Mullins effect in equibiaxial extension and its influence on the inflation of a balloon. Int. J. Eng. Sci. 33(2), 223–245 (1995)
MATH
Article
Google Scholar
Chen Y.C., Healey T.: Bifurcation to pear-shaped equilibria of pressurized spherical membranes. Int. J. Nonlinear Mech. 26, 279–291 (1991)
MathSciNet
ADS
MATH
Article
Google Scholar
D’Ambrosio P., De Tommasi D., Ferri D., Puglisi G.: A phenomenological model for healing and hysteresis in rubber-like materials. J. Eng. Sci. 46(4), 293–305 (2008)
MathSciNet
MATH
Article
Google Scholar
Deseri L., Piccioni M.D., Zurlo G.: Derivation of a new free energy for biological membranes. Continum Mech. Thermodyn. 20(5), 255–273 (2008)
MathSciNet
ADS
MATH
Article
Google Scholar
De Tommasi D., Puglisi G., Saccomandi G.: A micromechanics based model for the Mullins effect. J. Rheol. 50, 495–512 (2006)
ADS
Article
Google Scholar
De Tommasi D., Marzano S., Puglisi G., Zurlo G.: Damage and healing effects in rubber-like balloons. Int. J. Solids Struct. 46(22–23), 3999–4005 (2009)
MATH
Article
Google Scholar
De Tommasi, D., Puglisi, G., Zurlo, G.: A note on strong ellipticity in two-dimensional isotropic elasticity. J. Elast. (2012). doi:10.1007/s10659-011-9370-1. Published online
De Tommasi D., Puglisi G., Saccomandi G.: Localized versus diffuse damage in amorphous materials. Phys. Rev. Lett. 100, 085502 (2008)
ADS
Article
Google Scholar
Do Carmo M.: Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood Cliffs, NJ (1976)
MATH
Google Scholar
Ericksen J.L.: Introduction to the Thermodynamics of Solids. Chapman & Hall, London (1991)
MATH
Google Scholar
Guillemin V., Pollack A.: Differential Topology. Prentice Hall, Englewood Cliffs, NJ (1974)
MATH
Google Scholar
Gurtin M.E., Murdoch I.A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)
MathSciNet
MATH
Article
Google Scholar
Haughton D.M.: Post-bifurcation of perfect and imperfect spherical elastic membranes. Int. J. Solids Struct. 16, 1123–1133 (1980)
MATH
Article
Google Scholar
Knowles J.K., Sternberg E.: On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch. Ration. Mech. Anal. 63(4), 321–336 (1976)
MathSciNet
Article
Google Scholar
Molzon R., Man C.S.: Residual stress in membranes. J. Elast. 20, 181–202 (1988)
MathSciNet
MATH
Article
Google Scholar
Müller, I., Strehlow, P.: Rubber and rubber balloons: paradigms of thermodynamics. In: Lecture Notes in Physics. Springer, Berlin, Heidelberg, GmbH and Co. K (2004)
Pagitz M.: The future of scientific ballooning. Philos. Trans. R. Soc. A 365(1861), 3003–3017 (2007)
ADS
Article
Google Scholar
Rudykha, S., Bhattacharyac, K., de Botton, G.: Snap-through actuation of thick-wall electroactive balloons. Int. J. Nonlinear Mech. (2011, in press). doi:10.1016/j.ijnonlinmec.2011.05.006
Sewell M.J: Mathematics Masterclasses: Stretching the Imagination. Oxford University Press, Oxford (1997)
MATH
Google Scholar
Truesdell C., Noll W.: The Non-linear Field Theories of Mechanics, Handbuch der Physik, Band III/3. Springer, Berlin (1965)
Google Scholar
Tsunoda, H., Senbokuya, Y.: Rigidizable membranes for spaceinflatable structures, vol. 1367. American Institute of Aeronautics and Astronautics, Reston, VA (2002)
Verron E., Marckmann G.: Numerical analysis of rubber balloons. Thin Walled Struct. 41, 731–746 (2003)
Article
Google Scholar
Yoda M., Konishi S.: Acoustic impedance control through structural tuning by pneumatic balloon actuators. Sens. Act. A 95, 222–226 (2002)
Article
Google Scholar