Skip to main content

From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models

Abstract

We propose a construction method of non-homogeneous solutions for the traction problem of an elastic damaging bar. This bar has a softening behavior that obeys a gradient damaged model. The method is applicable for a wide range of brittle materials. For sufficiently long bars, we show that localization arises on sets whose length is proportional to the material internal length and with a profile that is also a material characteristic. From its onset until the rupture, the damage profile is obtained either in a closed form or after a simple numerical integration depending on the model. Thus, the proposed method provides definitions for the critical stress and fracture energy that can be compared with experimental results. We finally discuss some features of the global behavior of the bar such as the possibility of a snapback at the onset of damage. We point out the sensitivity of the responses to the parameters of the damage law. All these theoretical considerations are illustrated by numerical examples.

This is a preview of subscription content, access via your institution.

References

  1. Bažant Z.P., Belytschko T., Chang T.P.: Continuum theory for strain-softening. J. Eng. Mech. 110, 1666–1692 (1984)

    Article  Google Scholar 

  2. Bažant Z.P., Pijaudier-Cabot G.: ‘Non-local continum damage; localization instability and convergence’. J. Appl. Mech. ASME 55, 287–294 (1988)

    ADS  MATH  Article  Google Scholar 

  3. Benallal, A., Billardon, R.,Geymonat, G.: Bifurcation and localization in rate independent materials. In: Nguyen, Q. C.S.I.M Lecture Notes on Bifurcation and Stability of Dissipative Systems, Springer, Berlin (1993)

    Google Scholar 

  4. Benallal A., Marigo J.-J.: Bifurcation and stability issues in gradient theories with softening. Modelling Simul. Mater. Sci. Eng. 15, 283–295 (2007)

    ADS  Article  Google Scholar 

  5. Bourdin B., Francfort G., Marigo J.-J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  6. Charlotte, M., Francfort, G., Marigo, J.-J., Truskinovsky, L.: ‘Revisiting brittle fracture as an energy minimization problem: Comparisons of Griffith and Barenblatt surface energy models’. In: Benallal, A. (ed.) Continuous Damage and Fracture: Proceedings of the symposium, Cachan, France 23–27 octobre 2000. Elsevier. (2000)

  7. Comi C.: On localisation in ductile-brittle materials under compressive loadings. Euro. J. Mech. A/Solids 14, 19–43 (1995)

    MATH  Google Scholar 

  8. Comi C.: A non-local model with tension and compression damage mechanisms. Euro. J. Mech. A/Solids 20, 1–22 (2001)

    ADS  MATH  Article  Google Scholar 

  9. Comi C., Perego U.: Fracture energy based bi-dissipative damage model for concrete. Int J Solids Struct 38(36–37), 6427–6454 (2001)

    MATH  Article  Google Scholar 

  10. de Borst R., Sluys L., Mühlhaus H.-B., Pamin J.: Fundamental issues in finite element analysis of localization of deformation. Eng. Comp. 10, 99–121 (1993)

    Article  Google Scholar 

  11. DeSimone A., Marigo J.-J., Teresi L.: A damage mechanics approach to stress softening and its application to rubber. Euro. J. Mech. A/Solids 20(6), 873–892 (2001)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  12. Francfort G., Marigo J.-J.: Stable damage evolution in a brittle continuous medium. Euro. J. Mech. A/Solids 12, 149–189 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Francfort G., Marigo J.-J.: Revisiting brittle fracture as an energy minimization. J. Mech. Phys. Solids 46, 1319–1342 (1998)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  14. Lasry D., Lasry D.: Localization limiters in transient problems. Int. J. Solids Struct. 24, 581–587 (1988)

    MATH  Article  Google Scholar 

  15. Lorentz E., Andrieux S.: Analysis of non-local models through energetic formulations. Int. J. Solids Struct. 40, 2905–2936 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  16. Lorentz E., Cuvilliez S., Kazymyrenko K.: Convergence of a gradient damage model toward a cohesive zone model. Comptes Rendus Mécanique 339(1), 20–26 (2011)

    ADS  MATH  Article  Google Scholar 

  17. Marigo J.-J.: Constitutive relations in plasticity, damage and fracture mechanics based on a work property. Nuclear Eng. Design 114, 249–272 (1989)

    Article  Google Scholar 

  18. Marigo, J.-J.: From Clausius-Duhem and Drucker-Ilyushin inequalities to standard materials. In: Maugin, G.A., Drouot, R., Sidoroff, F. Continuum Thermodynamics: The Art and Science of Modelling Material Behaviour, vol. 76 of Solids Mechanics and Its Applications: Paul Germain’s Anniversary, Kluwer, The Netherlands (2000)

    Google Scholar 

  19. Marigo J.-J., Truskinovsky L.: Initiation and propagation of fracture in the models of Griffith and Barenblatt. Contin. Mech. Thermodyn. 16(4), 391–409 (2004)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  20. Mielke, A.: Evolution of rate-independent systems. In: Evolutionary equations, vol. II of Handb. Differ. Equ. Amsterdam: Elsevier/North-Holland, pp. 461–559 (2005)

  21. Nguyen Q.: Bifurcation and postbifurcation analysis in plasticity and brittle fracture. J. Mech. Phys. Solids 35, 303–324 (1987)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  22. Nguyen Q.S.: Stability and Nonlinear Solid Mechanics. Wiley, London (2000)

    Google Scholar 

  23. Peerlings R., de Borst R., Brekelmans W., de Vree J., Spee I.: Some observations on localisation in non-local and gradient damage models. Eur. J. Mech. A/Solids 15, 937–953 (1996)

    MATH  Google Scholar 

  24. Peerlings R., de Borst R., Brekelmans W., Geers M.: Wave propagation and localisation in nonlocal and gradient-enhanced damage models. J. de Physique IV 8, 293–300 (1998)

    Article  Google Scholar 

  25. Pham K., Amor H., Marigo J.-J., Maurini C.: Gradient damage models and their use to approximate brittle fracture. Int. J. Damage Mech. 20(4), 618–652 (2011)

    Article  Google Scholar 

  26. Pham K., Marigo J.-J.: Approche variationnelle de l’endommagement: I. Les concepts fondamentaux. Comptes Rendus Mécanique 338(4), 191–198 (2010)

    ADS  MATH  Article  Google Scholar 

  27. Pham K., Marigo J.-J.: Approche variationnelle de l’endommagement: II. Les modèles à gradient’. Comptes Rendus Mécanique 338(4), 199–206 (2010)

    ADS  MATH  Article  Google Scholar 

  28. Pham K., Marigo J.-J., Maurini C.: ‘The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models’. J. Mech. Phys. Solids 59(6), 1163–1190 (2011)

    MathSciNet  ADS  Article  Google Scholar 

  29. Pijaudier-Cabot G., Bažant Z.P.: Non-local damage theory. J. Eng. Mech. 113, 1512–1533 (1987)

    Article  Google Scholar 

  30. Pijaudier-Cabot G., Benallal A.: Strain localization and bifurcation in a non-local continuum. Int. J. Solids Struct. 30, 1761–1775 (1993)

    MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Marigo.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pham, K., Marigo, JJ. From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models. Continuum Mech. Thermodyn. 25, 147–171 (2013). https://doi.org/10.1007/s00161-011-0228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-011-0228-3

Keywords

  • Damage
  • Gradient theory
  • Localization
  • Variational approach