Skip to main content
Log in

On the Müller paradox for thermal-incompressible media

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In his monograph Thermodynamics, I. Müller proves that for incompressible media the volume does not change with the temperature. This Müller paradox yields an incompatibility between experimental evidence and the entropy principle. This result has generated much debate within the mathematical and thermodynamical communities as to the basis of Boussinesq approximation in fluid dynamics. The aim of this paper is to prove that for an appropriate definition of incompressibility, as a limiting case of quasi-thermal-incompressible body, the entropy principle holds for pressures smaller than a critical pressure value. The main consequence of our result is the physically obvious one that for very large pressures, no body can be perfectly incompressible. The result is first established in the fluid case. In case of hyperelastic media subject to large deformations, the approach is similar, but with a suitable definition of the pressure associated with a convenient stress tensor decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klainerman S., Majda S.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34, 481–524 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Klainerman S., Majda S.: Compressible and incompressible fluids. Comm. Pure Appl. Math. 35, 629–653 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  3. Lions P.L., Masmoudi N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Desjardins B., Grenier E., Lions P.L., Masmoudi N.: Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471 (1999)

    MathSciNet  Google Scholar 

  5. Bechtel S.E., Cai M., Rooney F.J., Wang Q.: Investigation of simplified thermal expansion models for compressible Newtonian fluids applied to nonisothermal plane Couette and Poiseuille flows. Phys. Fluids. 16, 3955–3974 (2004)

    Article  ADS  Google Scholar 

  6. Müller I.: Thermodynamics. Pitman, London (1985)

    MATH  Google Scholar 

  7. Rajagopal K.R., Ruzika M., Srinivasa A.R.: On the Oberbeck-Boussinesq approximation. Math. Models Methods Appl. Sci. 6(8), 1157–1167 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rajagopal K.R., Saccomandi G., Vergori L.: On the Oberbeck-Boussinesq approximation for fluids with pressure dependent viscosities. Nonlinear Anal. Real World Appl. 10, 1139–1150 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Weast, R.C., Astle, M.J., Beyer, W.H. (eds.): CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton (1988)

  10. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability, ch. 2, sect. 8, p. 16, Dover, New York (1981) (reedited from Oxford University Press 1961)

  11. Straughan B.: The Energy Method, Stability and Nonlinear Convection, ch 3, sect. 3.2, 2nd edn, pp. 48–49. Springer, New York (2004)

    Google Scholar 

  12. Fine R.A., Millero F.J.: Compressibility of water as a function of temperature and pressure. J. Chem. Phys. 59(10), 5529–5536 (1973)

    Article  ADS  Google Scholar 

  13. http://physics.info/expansion/; http://www.matbase.com/

  14. Wang C.C., Truesdell C.: Introduction to Rational Elasticity. Noordhoff Int. Publ., Léyden, The Netherlands (1973)

    MATH  Google Scholar 

  15. Germain P.: Cours de mécanique des milieux continus. Masson, Paris (1973)

    MATH  Google Scholar 

  16. Ruggeri T.: Introduzione Alla Termomeccanica Dei Continui. Monduzzi, Bologna (2007)

    Google Scholar 

  17. Truesdell C., Toupin R.A.: Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, vol. III/1. Springer, Berlin (1960)

    Google Scholar 

  18. Flory P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    Article  MathSciNet  Google Scholar 

  19. Gouin, H., Debiève, J.F.: Variational principle involving the stress tensor in elastodynamics. Int. J. Eng. Sci. 24, 1057–1066 (1986). http://arXiv:0807.3454

    Google Scholar 

  20. Flory P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca, New York (1953)

    Google Scholar 

  21. Manacorda T.: Onde Elementari Nella Termoelasticità di Solidi Incomprimibili, pp. 503–509. Atti Accademia Scienze, Torino (1967)

    Google Scholar 

  22. Scott N.H.: Linear dynamical stability in constrained thermoelasticity: II. Deformation-entropy constraints. Q. J. Mech. Appl. Math. 45, 651–662 (1992)

    Article  MATH  Google Scholar 

  23. Scott N.H.: Thermoelasticity with thermomechanical constraints. Int. J. Non-Linear Mech. 36, 549–564 (2001)

    Article  ADS  MATH  Google Scholar 

  24. Chadwick P., Scott N.H.: Linear dynamical stability in constrained thermoelasticity: I. Deformation-temperature constraints. Q. J. Mech. Appl. Math. 45, 641–650 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Leslie D.J., Scott N.H.: Incompressibility at uniform temperature or entropy in isotropic thermoelasticity. Q. J. Mech. Appl. Math. 51, 191–211 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ruggeri.

Additional information

Communicated by Manuel Torrilhon.

Dedicated to Professor Ingo Müller for his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gouin, H., Muracchini, A. & Ruggeri, T. On the Müller paradox for thermal-incompressible media. Continuum Mech. Thermodyn. 24, 505–513 (2012). https://doi.org/10.1007/s00161-011-0201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-011-0201-1

Keywords

Mathematics Subject Classification (2000)

Navigation