Skip to main content
Log in

Theory of defect dynamics in graphene: defect groupings and their stability

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We use our theory of periodized discrete elasticity to characterize defects in graphene as the cores of dislocations or groups of dislocations. Earlier numerical implementations of the theory predicted some of the simpler defect groupings observed in subsequent Transmission Electron Microscope experiments. Here, we derive the more complicated defect groupings of three or four defect pairs from our theory, show that they correspond to the cores of two pairs of dislocation dipoles and ascertain their stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  2. Geim A.K., Novoselov K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  3. Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  ADS  Google Scholar 

  4. Vozmediano M.A.H., Katsnelson M.I., Guinea F.: Gauge fields in graphene. Phys. Rep. 496, 109–148 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  5. Meyer J.C., Geim A.K., Katsnelson M.I., Novoselov K.S., Booth T.J., Roth S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007)

    Article  ADS  Google Scholar 

  6. Fasolino A., Los J.H., Katsnelson M.I.: Intrinsic ripples in graphene. Nat. Mater. 6, 858–861 (2007)

    Article  ADS  Google Scholar 

  7. Meyer J.C., Kisielowski C., Erni R., Rossell M.D., Crommie M.F., Zettl A.: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8(11), 3582–3586 (2008)

    Article  ADS  Google Scholar 

  8. Wang X., Tabakman S.M., Dai H.: Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130, 8152–8153 (2008)

    Article  Google Scholar 

  9. Coleman, V.A., Knut, R., Karis, O., Grennberg, H., Jansson, U., Quinlan, R., Holloway, B.C., Sanyal, B., Eriksson, O.: Defect formation in graphene nanosheets by acid treatment: an x-ray absorption spectroscopy and density functional theory study. J. Phys. D Appl. Phys. 41, 062001 (2008) (4 p)

    Google Scholar 

  10. Gómez-Navarro C., Meyer J.C., Sundaram R.S., Chuvilin A., Kurasch S., Burghard M., Kern K., Kaiser U.: Atomic structure of reduced graphene oxide. Nano Lett. 10, 1144–1148 (2010)

    Article  ADS  Google Scholar 

  11. Meyer J.C., Chuvilin A., Algara-Siller G., Biskupek J., Kaiser U.: Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett. 9, 2683–2689 (2009)

    Article  ADS  Google Scholar 

  12. Carpio, A., Bonilla, L.L., de Juan, F., Vozmediano, M.A.H.: Dislocations in graphene. New J. Phys. 10, 053021 (2008) (13 p)

    Google Scholar 

  13. Carpio, A., Bonilla, L.L.: Periodized discrete elasticity models for defects in graphene. Phys. Rev. B 78, 085406 (2008) (11 p)

    Google Scholar 

  14. Carpio, A., Bonilla, L.L.: Discrete models of dislocations and their motion in cubic crystals. Phys. Rev. B 71, 134105 (2005) (10 p)

    Google Scholar 

  15. Landau L.D., Lifshitz E.M.: Theory of Elasticity. 3rd edn. Pergamon Press, Oxford (1986)

    Google Scholar 

  16. Blakslee O.L., Proctor D.G., Seldin E.J., Spence G.B., Weng T.: Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41, 3373–3382 (1970)

    Article  ADS  Google Scholar 

  17. Zakharchenko K.V., Katsnelson M.I., Fasolino A.: Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett. 102, 046808 (2009)

    Article  ADS  Google Scholar 

  18. Lee C., Wei X., Kysar J.W., Hone J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  ADS  Google Scholar 

  19. Carpio, A., Bonilla, L.L.: Edge dislocations in crystal structures considered as traveling waves of discrete models. Phys. Rev. Lett. 90, 135502 (2003) (4 p)

    Google Scholar 

  20. Plans, I., Carpio, A., Bonilla, L.L.: Homogeneous nucleation of dislocations as bifurcations in a periodized discrete elasticity model. Europhys. Lett. 81, 36001 (2008) (6 p)

    Google Scholar 

  21. Plans I., Carpio A., Bonilla L.L.: Toy nanoindentation model and incipient plasticity. Chaos Solitons Fractals 42, 1623–1630 (2009)

    Article  ADS  Google Scholar 

  22. Girit C.O., Meyer J.C., Erni K., Rossell M.D., Kisielowski C., Yang L., Park C.-H., Crommie M.F., Cohen M.L., Louie S.G., Zettl A.: Graphene at the edge: stability and dynamics. Science 323, 1705–1708 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Bonilla.

Additional information

Communicated by L. Truskinovsky.

Work financed by the Spanish Ministry of Science and Innovation under grants FIS2008-04921-C02-01 and FIS2008-04921-C02-01.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (MOV 412 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonilla, L.L., Carpio, A. Theory of defect dynamics in graphene: defect groupings and their stability. Continuum Mech. Thermodyn. 23, 337–346 (2011). https://doi.org/10.1007/s00161-011-0182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-011-0182-0

Keywords

Navigation