Skip to main content
Log in

Γ-convergence of energies for nematic elastomers in the small strain limit

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript


We study two variational models recently proposed in the literature to describe the mechanical behaviour of nematic elastomers either in the fully nonlinear regime or in the framework of a geometrically linear theory. We show that, in the small strain limit, the energy functional of the first one Γ-converges to the relaxation of the second one, a functional for which an explicit representation formula is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Bladon P., Terentjev E.M., Warner M.: Transitions and instabilities in liquid-crystal elastomers. Phys. Rev. E 47, R3838–R3840 (1993)

    Article  ADS  Google Scholar 

  2. Cesana P., DeSimone A.: Strain-order coupling in nematic elastomers: equilibrium configurations. Math. Models Methods Appl. Sci. 19, 601–630 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cesana P.: Relaxation of multi-well energies in linearized elasticity and applications to nematic elastomers. Arch. Ration. Mech. Anal. 197(3), 903–923 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Conti, S., DeSimone, A., Dolzmann, G.: Semi-soft elasticity and director reorientation in stretched sheets of nematic elastomers. Phys. Rev. E 60, 61710-1-8 (2002a)

  5. Conti S., DeSimone A., Dolzmann G.: Soft elastic response of stretched sheets of nematic elastomers: a numerical study. J. Mech. Phys. Solids 50, 1431–1451 (2002b)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. DeSimone A.: Energetics of fine domain structures. Ferroelectrics 222, 275–284 (1999)

    Article  Google Scholar 

  7. DeSimone A., Dolzmann G.: Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies. Arch. Ration. Mech. Anal. 161, 181–204 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. DeSimone A., Teresi L.: Elastic energies for nematic elastomers. Eur. Phys. J. E 29, 191–204 (2009)

    Article  Google Scholar 

  9. Flory P.J.: Principles of Polymer Chemistry. Cornell University Press, London (1953)

    Google Scholar 

  10. Fukunaga A., Urayama K., Takigawa T., DeSimone A., Teresi L.: Dynamics of electro-opto-mechanical effects in swollen nematic elastomers. Macromolecules 41, 9389–9396 (2008)

    Article  ADS  Google Scholar 

  11. Gurtin M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)

    MATH  Google Scholar 

  12. Kohn R.V.: The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3(3), 193–236 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Schmidt B.: Linear Γ-limits of multiwell energies in nonlinear elasticity theory. Contin. Mech. Thermodyn. 20(6), 375–396 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Warner M., Terentjev E.M.: Liquid Crystal Elastomers. Clarendon Press, Oxford (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Virginia Agostiniani.

Additional information

Communicated by Prof. Yury Grabovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agostiniani, V., DeSimone, A. Γ-convergence of energies for nematic elastomers in the small strain limit. Continuum Mech. Thermodyn. 23, 257–274 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: