Advertisement

Linear and nonlinear double diffusive convection in a rotating sparsely packed porous layer using a thermal non-equilibrium model

  • M. S. MalashettyEmail author
  • Ioan Pop
  • Rajashekhar Heera
Original Article

Abstract

Double diffusive convection in a fluid-saturated rotating porous layer is studied when the fluid and solid phases are not in local thermal equilibrium, using both linear and nonlinear stability analyses. The Brinkman model that includes the Coriolis term is employed as the momentum equation. A two-field model that represents the fluid and solid phase temperature fields separately is used for the energy equation. The onset criterion for stationary, oscillatory, and finite amplitude convection is derived analytically. It is found that small inter-phase heat transfer coefficient has significant effect on the stability of the system. There is a competition between the processes of thermal diffusion, solute diffusion, and rotation that causes the convection to set in through either oscillatory or finite amplitude mode rather than stationary. The effect of solute Rayleigh number, porosity modified conductivity ratio, Lewis number, diffusivity ratio, Vadasz number, and Taylor number on the stability of the system is investigated. The nonlinear theory based on the truncated representation of Fourier series method predicts the occurrence of subcritical instability in the form of finite amplitude motions. The effect of thermal non-equilibrium on heat and mass transfer is also brought out. Some of the convection systems previously reported in the literature is shown to be special cases of the system presented in this study.

Keywords

Double diffusive convection Local thermal non-equilibrium Brinkman model Porous layer Rotation 

PACS

47.55.P- 47.55.pb 47.55.pd 47.56+r 44.30.+v 

References

  1. 1.
    Amahmid A., Hasnaoui M., Mamou M., Vasseur P.: Double-diffusive parallel flow induced in a horizontal Brinkman porous layer subjected to constant heat and mass fluxes: analytical and numerical studies. Heat Mass Transf. 35, 409–421 (1999)CrossRefGoogle Scholar
  2. 2.
    Bahloul A., Boutana N., Vasseur P.: Double diffusive and Soret-induced convection in a shallow horizontal porous layer. J. Fluid Mech. 491, 325–352 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Banu N., Rees D.A.S.: Onset of Darcy-Benard convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 45, 2221–2228 (2002)zbMATHCrossRefGoogle Scholar
  4. 4.
    Baytas A.C.: Thermal non-equilibrium natural convection in a square enclosure filled with a heat-generating solid phase non-Darcy porous medium. Int. J. Energy Res. 27, 975–988 (2003)CrossRefGoogle Scholar
  5. 5.
    Baytas A.C.: Thermal non-equilibrium free convection in a cavity filled with a non-Darcy porous medium. In: Ingham, D.B., Bejan, A., Mamut, E., Pop, I. (eds) Emerging Technologies and Techniques in Porous Media, pp. 247–258. Kluwer Academic, Dordrecht (2004)Google Scholar
  6. 6.
    Baytas A.C., Pop I.: Free convection in a square porous cavity using a thermal non-equilibrium model, Int. J. Therm. Sci. 41, 861–870 (2002)CrossRefGoogle Scholar
  7. 7.
    Chakrabarti A., Gupta A.S.: Nonlinear thermohaline convection in a rotating porous medium. Mech. Res. Commun. 8, 9–15 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Galdi G.P., Payne L.E., Proctor M.R.E., Straughan B.: Convection in thawing subsea permafrost. Proc. R. Soc. Lond. A 414, 83–102 (1987)zbMATHCrossRefGoogle Scholar
  9. 9.
    Guo J., Kaloni P.N.: Nonlinear stability problem of a rotating doubly diffusive porous layer. J. Math. Anal. Appl. 190, 373–390 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hill A.A.: Double-diffusive convection in a porous medium with a concentration based internal heat source. Proc. R. Soc. Lond. A 461, 561–574 (2005)zbMATHCrossRefGoogle Scholar
  11. 11.
    Horton W., Rogers F.T.: Convection currents in a porous medium. J. Appl. Phys. 16, 367–370 (1945)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hutter K., Straughan B.: Penetrative convection in thawing subsea permafrost. Continuum Mech. Thermodyn. 9, 259–272 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hutter K., Straughan B.: Models for convection in thawing porous media in support for the subsea permafrost equations. J. Geophys. Res. 104(B12), 29249–29260 (1999)CrossRefGoogle Scholar
  14. 14.
    Ingham D.B., Pop I.: Transport Phenomena in Porous Media. Pergamon, Oxford (1998)zbMATHGoogle Scholar
  15. 15.
    Ingham D.B., Pop I.: Transport Phenomena in Porous Media, Vol. III. Elsevier, Oxford (2005)Google Scholar
  16. 16.
    Joseph D.D.: Global stability of the conduction-diffusion solution. Arch. Rational Mech. Anal. 36, 285–292 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Karimi-Fard M., Charrier-Mojtabi M.C., Mojtabi A.: Onset of stationary and oscillatory convection in a tilted porous cavity saturated with binary fluid: Linear stability analysis. Phys. Fluids 11(6), 1346–1358 (1999)zbMATHCrossRefGoogle Scholar
  18. 18.
    Kuznetsov A.V.: A perturbation solution for a non-thermal equilibrium fluid flow through a three-dimensional sensible storage packed bed. Trans. ASME J. Heat Transf. 118, 508–510 (1996)CrossRefGoogle Scholar
  19. 19.
    Kuznetsov A.V.: Thermal non-equilibrium forced convection in porous Media. In: Ingham, D.B., Pop, I. (eds) Transport Phenomenon in Porous Media, pp. 103–130. Pergamon, Oxford (1998)CrossRefGoogle Scholar
  20. 20.
    Lapwood E.R.: Convection of a fluid in a porous medium. Proc. Cambridge Phil. Soc. 44, 508–521 (1948)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lombardo S., Mulone G.: Necessary and sufficient conditions of global nonlinear stability for rotating double-diffusive convection in a porous medium. Continuum Mech. Thermodyn. 14, 527–540 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Malashetty M.S.: Anisotropic thermo convective effects on the onset of double diffusive convection in a porous medium. Int. J. Heat Mass Transf. 36, 2397–2401 (1993)zbMATHCrossRefGoogle Scholar
  23. 23.
    Malashetty M.S., Heera R. (2008) The onset of double diffusive convection in a sparsely packed porous layer using a thermal non-equilibrium model. Acta Mech. doi: 10.1007/s00707-008-0036-4
  24. 24.
    Malashetty M.S., Heera R.: Linear and non-linear double diffusive convection in rotating porous layer using a thermal non-equilibrium model. Int. J. Non Linear Mech. 43, 600–621 (2008)CrossRefGoogle Scholar
  25. 25.
    Malashetty, M.S., Swamy, M.S.: Linear stability analysis for a rotating Brinkman porous layer using a thermal non-equilibrium model. Int. J. Heat Mass Transf. (2009, submitted)Google Scholar
  26. 26.
    Malashetty M.S., Shivakumara I.S., Sridhar K.: The onset of Lapwood-Brinkman convection using a thermal non- equilibrium model. Int. J. Heat Mass Transf. 48, 1155–1163 (2005)CrossRefGoogle Scholar
  27. 27.
    Malashetty M.S., Shivakumara I.S., Sridhar K.: The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model. Transp. Porous Media 60, 199–215 (2005)CrossRefGoogle Scholar
  28. 28.
    Malashetty M.S., Swamy M.S., Heera R.: Double diffusive convection in a porous layer using a thermal non-equilibrium model. Int. J. Therm. Sci. 47, 1131–1147 (2008)CrossRefGoogle Scholar
  29. 29.
    Malashetty, M.S., Swamy, M.S., Sridhar, K.: Thermal convection in a rotating porous layer using a thermal non-equilibrium model. Phys. Fluids 19, 054102, pp. 1–16 (2007)Google Scholar
  30. 30.
    Mamou M.: Stability analysis of double–diffusive convection in porous enclosures. In: Ingham, D.B., Pop, I. (eds) Transport Phenomena in Porous Media II, pp. 113–154. Elsevier, Oxford (2002)CrossRefGoogle Scholar
  31. 31.
    Mamou M., Vasseur P.: Thermosolutal bifurcation phenomena in porous enclosures subject to vertical temperature and concentration gradients. J. Fluid Mech. 395, 61–87 (1999)zbMATHCrossRefGoogle Scholar
  32. 32.
    Mamou M., Vasseur P., Hasnaoui M.: On numerical stability analysis of double diffusive convection in confined enclosures. J. Fluid Mech. 433, 209–250 (2001)zbMATHGoogle Scholar
  33. 33.
    Mojtabi A., Charrier-Mojtabi M.C.: Double-diffusive convection in porous media. In: Vafai, K. (eds) Handbook of Porous Media, pp. 559–603. Marcel Dekker, New York (2000)Google Scholar
  34. 34.
    Mojtabi A., Charrier-Mojtabi M.C.: Double-diffusive convection in porous media. In: Vafai, K. (eds) Handbook of Porous media, 2nd edn, pp. 269–320. Taylor and Francis, New York (2005)Google Scholar
  35. 35.
    Mulone G.: On the nonlinear stability of a fluid layer of a mixture heated and salted from below. Continuum Mech. Thermodyn. 6, 161–184 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Mulone G., Straughan B.: An operative method to obtain necessary and sufficient stability conditions for double diffusive convection in porous media. ZAMM 86, 507–520 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Murray B.T., Chen C.F.: Double diffusive convection in a porous medium. J. Fluid Mech. 201, 147–166 (1989)CrossRefGoogle Scholar
  38. 38.
    Nield D.A.: Onset of thermohaline convection in a porous medium. Water Resour. Res. 4, 553–560 (1968)CrossRefGoogle Scholar
  39. 39.
    Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer-Verlag (2006)Google Scholar
  40. 40.
    Patil P.R., Parvathy C.P., Venkatakrishnan K.S.: Thermohaline instability in a rotating anisotropic porous medium. Appl. Sci. Res. 46, 73–88 (1989)zbMATHCrossRefGoogle Scholar
  41. 41.
    Payne L.E., Song J.C., Straughan B.: Double diffusive porous penetrative convection. Int. J. Eng. Sci. 26, 797–809 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Poulikakos D: Double diffusive convection in a horizontally sparsely packed porous layer. Int. Commun. Heat Mass Transf. 13, 587–598 (1986)CrossRefGoogle Scholar
  43. 43.
    Rees D.A.S., Pop I.: Local thermal non-equilibrium in porous medium convection. In: Ingham, D.B., Pop, I. (eds) Transport Phenomena in Porous Media, Vol. III, pp. 147–173. Elsevier, Oxford (2005)CrossRefGoogle Scholar
  44. 44.
    Rudraiah N., Malashetty M.S.: The influence of coupled molecular diffusion on the double diffusive convection in a porous medium. ASME J. Heat Transf. 108, 872–876 (1986)CrossRefGoogle Scholar
  45. 45.
    Rudraiah N., Shivakumara I.S., Friedrich R.: The effect of rotation on linear and nonlinear double diffusive convection in a sparsely packed porous medium Int. J. Heat Mass Transf. 29, 1301–1317 (1986)zbMATHCrossRefGoogle Scholar
  46. 46.
    Rudraiah N., Srimani P.K., Friedrich R: Finite amplitude convection in a two component fluid saturated porous layer. Heat Mass Transf. 25, 715–722 (1982)zbMATHCrossRefGoogle Scholar
  47. 47.
    Saeid N.H.: Analysis of mixed convection in a vertical porous layer using non-equilibrium model. Int. J. Heat Mass Transf. 47, 5619–5627 (2004)zbMATHCrossRefGoogle Scholar
  48. 48.
    Straughan B: A sharp nonlinear stability threshold in rotating porous convection. Proc. R. Soc. Lond. A 457, 87–93 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Straughan B.: The Energy Method, Stability and Nonlinear Convection, 2nd edn, Ser. Appl. Math. Sci., Vol. 91. Springer, New York (2004)Google Scholar
  50. 50.
    Straughan B: Global non-linear stability in porous convection with a thermal non-equilibrium model. Proc. R. Soc. Lond. A 462, 409–418 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Straughan B.: Stability and Wave Motion in Porous Media, Ser. Appl. Math. Sci., Vol. 165. Springer, New York (2008)Google Scholar
  52. 52.
    Straughan B., Hutter K.: A priori bounds and structural stability for double diffusive convection incorporating the Soret effect. Proc. R. Soc. Lond. A 455, 767–777 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Taslim M.E., Narusawa U: Binary fluid composition and double diffusive convection in porous medium. J. Heat Mass Transf. 108, 221–224 (1986)CrossRefGoogle Scholar
  54. 54.
    Vadasz P.: Coriolis effect on gravity-driven convection in a rotating porous layer heated from below. J. Fluid Mech. 376, 351–375 (1998)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • M. S. Malashetty
    • 1
    Email author
  • Ioan Pop
    • 2
  • Rajashekhar Heera
    • 1
  1. 1.Department of MathematicsGulbarga UniversityGulbargaIndia
  2. 2.Department of MathematicsUniversity of ClujClujRomania

Personalised recommendations