Advertisement

Continuum Mechanics and Thermodynamics

, Volume 21, Issue 4, pp 297–315 | Cite as

Two-scale modelling of micromorphic continua

A numerical homogenization scheme
  • Ralf JänickeEmail author
  • Stefan Diebels
  • Hans-Georg Sehlhorst
  • Alexander Düster
Original Article

Abstract

According to their peculiar mechanical properties, the description of cellular materials is of high interest. Modelling aspects to be considered are, e.g. pronounced size depending boundary layer effects as well as a deformation-driven evolution of anisotropy or porosity. In the present contribution, we pay special attention to the description of size-dependent microtopological effects on the one hand. On the other hand, we focus on the relevance of extended continuum theories describing the local deformation state of microstructured materials. We, therefore, introduce a homogenization scheme for two-scale problems replacing a heterogeneous Cauchy continuum on the microscale by a homogeneous effective micromorphic continuum on the macroscale. The transitions between both scales are obtained by appropriate projection and homogenization rules which have to be derived, on the one hand, by kinematic assumptions, i.e. the minimization of the macroscopic displacement field, and, on the other hand, by energetic considerations, i.e. the evaluation of an extended Hill–Mandel condition.

Keywords

Multiscale materials Size effects Extended continua Homogenization Two-scale FEM 

PACS

46.05.+b 46.15.-x 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Capriz G., Podio-Guidugli P., Williams W.: On balance equations for materials with affine structure. Meccanica 17, 80–84 (1982)zbMATHCrossRefGoogle Scholar
  2. 2.
    Cosserat E., Cosserat F.: Théorie des corps déformables. A. Hermann et Fils, Paris (1909)Google Scholar
  3. 3.
    Diebels S.: Ein mikropolares Materialgesetz für poröse Festkörper. Z. Angew. Math. Mech. 79, S533–S534 (1999)zbMATHGoogle Scholar
  4. 4.
    Diebels S., Steeb H.: The size effect in foams and its theoretical and numerical investigation. Proc. R. Soc. Lond. A 458, 2869–2883 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Diebels S., Steeb H.: Stress and couple stress in foams. Comput. Math. Sci. 28, 714–722 (2003)CrossRefGoogle Scholar
  6. 6.
    Diebels S., Johlitz M., Steeb H., Possart W., Batal J.: A continuum-based model capturing size effects in polymer bonds. J. Phys. 62, 34–42 (2007)Google Scholar
  7. 7.
    Eringen C.: Polar and Nonlocal Field Theories, Continuum Physics, vol. IV. Academic Press, Boston (1976)Google Scholar
  8. 8.
    Eringen C.: Microcontinuum Field Theories, vol. I: Foundations and Solids. Springer-Verlag, Berlin (1999)Google Scholar
  9. 9.
    Feyel F., Chaboche J.L.: FE 2 multiscale approach for modelling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng. 183, 309–330 (2000)zbMATHCrossRefGoogle Scholar
  10. 10.
    Forest S.: Mechanics of generalized continua: construction by homogenization. J. Phys. IV, 39–48 (1998)MathSciNetGoogle Scholar
  11. 11.
    Forest S.: Homogenization methods and the mechanics of generalized continua—Part 2. Theor. Appl. Mech. 28–29, 113–143 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Forest S.: Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Forest S., Sab K.: Cosserat overall modeling of heterogeneous materials. Mech. Res. Commun. 25, 449–454 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Germain P.: La méthode des puissances virtuelles en mécanique des milieux continus, Première partie: Théorie du second gradient. J. Mecanique 12, 235–274 (1973)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Germain P.: The method of virtual power in continuum mechanics. Part 2: Microstructure. J. Appl. Mech. 25, 556–575 (1973)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Hazanov S.: Hill condition and overall properties of composites. Arch. Appl. Mech. 68(6), 385–394 (1998)zbMATHCrossRefGoogle Scholar
  17. 17.
    Hill R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)zbMATHCrossRefGoogle Scholar
  18. 18.
    Hill R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond. A 326, 131–147 (1972)zbMATHCrossRefGoogle Scholar
  19. 19.
    Huet C.: Coupled size and boundary-condition eects in viscoelastic heterogeneous and composite bodies. Mech. Mater. 31, 787–829 (1999)CrossRefGoogle Scholar
  20. 20.
    Jänicke R., Diebels S.: A numerical homogenisation strategy for micromorphic continua. Nuovo Cimento Soc. Ital. Fis. C 31(1), 121–132 (2009)Google Scholar
  21. 21.
    Kaczmarczyk L., Pearce C.J., Bićanić N.: Scale transition and enforcement of RVE boundary conditions in second-order homogenization. Int. J. Numer. Methods Eng. 74, 506–522 (2008)zbMATHCrossRefGoogle Scholar
  22. 22.
    Kirchner N., Steinmann P.: Mechanics of extended continua: modeling and simulation of elastic microstretch materials. Comput. Mech. 40(4), 651–666 (2007)zbMATHCrossRefGoogle Scholar
  23. 23.
    Kouznetsova, V.G.: Computational homogenization for the multi-scale analysis of multi-phase m aterial. PhD-thesis, Technische Universiteit Eindhoven, The Netherlands (2002)Google Scholar
  24. 24.
    Kouznetsova V.G., Geers M.G.D., Brekelmans W.A.M.: Size of a representative volume element in a second-order computational homogenization framework. Int. J. Multiscale Comput. Eng. 2(4), 575–598 (2004)CrossRefGoogle Scholar
  25. 25.
    Larsson R., Diebels S.: A second order homogenization procedure for multi-scale analysis based on micropolar kinematics. Int. J. Numer. Methods Eng. 69, 2485–2512 (2006)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Maugin G.A.: Nonlocal theories or gradient-type theories: a matter of convenience?. Acta Mater. 31, 15–26 (1979)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Maugin G.A.: The Thermomechanics of Plasticity and Fracture. Cambridge University Press, Cambridge (1992)zbMATHGoogle Scholar
  28. 28.
    Mindlin R.D.: Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Neff, P.: On material constants for micromorphic continua. In: K. Hutter, Y. Wang (eds.) Proceedings of ‘International Symposium on Trends in Applications of Mathematics to Mechanics’. Shaker, Aachen (2004)Google Scholar
  30. 30.
    Nemat-Nasser S.: On finite plastic flow of crystalline solids and geomaterials. J. Appl. Mech. 50, 1114–1126 (1983)zbMATHCrossRefGoogle Scholar
  31. 31.
    Nemat-Nasser S., Hori M.: Micromechanics. North-Holland, Amsterdam (1993)zbMATHGoogle Scholar
  32. 32.
    Steeb H., Diebels S.: Continua with affine microstructure: theoretical aspects and application. Proc. Appl. Math. Mech. 5, 319–320 (2005)CrossRefGoogle Scholar
  33. 33.
    Tekoǧlu C., Onck P.R.: Size effects in two-dimensional voronoi foams: A comparison between generalized continua and discrete models. J. Mech. Phys. Solids 56, 3541–3564 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ralf Jänicke
    • 1
    Email author
  • Stefan Diebels
    • 1
  • Hans-Georg Sehlhorst
    • 2
  • Alexander Düster
    • 2
  1. 1.Chair of Applied MechanicsSaarland UniversitySaarbrückenGermany
  2. 2.Numerische Strukturanalyse mit Anwendungen in der SchiffstechnikTechnische Universität Hamburg-HarburgHamburgGermany

Personalised recommendations