Continuum Mechanics and Thermodynamics

, Volume 21, Issue 4, pp 269–295 | Cite as

An effective interaction potential model for the shape memory alloy AuCd

  • Venkata Suresh Guthikonda
  • Ryan S. ElliottEmail author
Original Article


The unusual properties of shape memory alloys (SMAs) result from a lattice level martensitic transformation (MT) corresponding to an instability of the SMAs crystal structure. Currently, there exists a shortage of material models that can capture the details of lattice level MTs occurring in SMAs and that can be used for efficient computational investigations of the interaction between MTs and larger-scale features found in typical materials. These larger-scale features could include precipitates, dislocation networks, voids, and even cracks. In this article, one such model is developed for the SMA AuCd. The model is based on effective interaction potentials (EIPs). These are atomic interaction potentials that are explicit functions of temperature. In particular, the Morse pair potential is used and its adjustable coefficients are taken to be temperature dependent. An extensive exploration of the Morse pair potential is performed to identify an appropriate functional form for the temperature dependence of the potential parameters. A fitting procedure is developed for the EIPs that matches, at suitable temperatures, the stress-free equilibrium lattice parameters, instantaneous bulk moduli, cohesive energies, thermal expansion coefficients, and heat capacities of FCC Au, HCP Cd, and the B2 cubic austenite phase of the Au-47.5at%Cd alloy. The resulting model is explored using branch-following and bifurcation techniques. A hysteretic temperature-induced MT between the B2 cubic and B19 orthorhombic crystal structures is predicted. This is the behavior that is observed in the real material. In addition to reproducing the important properties mentioned above, the model predicts, to reasonable accuracy, the transformation strain tensor and captures the latent heat and thermal hysteresis to within an order of magnitude.


Shape memory alloys Martensitic transformations Morse potential Material stability Effective interaction potentials AuCd 


81.30.Kf 81.30.Hd 64.60.Cn 64.70.Kd 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brinson L.C.: One dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions. J. Intell. Mater. Syst. Struct. 4(2), 229–242 (1993)CrossRefGoogle Scholar
  2. 2.
    Brinson L.C., Huang M.S.: Simplifications and comparisons of shape memory alloy constitutive models. J. Intell. Mater. Syst. Struct. 7(1), 108–114 (1996)CrossRefGoogle Scholar
  3. 3.
    Brown K.S., Sethna J.P.: Statistical mechanical approaches to models with many poorly known parameters. Phys. Rev. E 68(2), 021904 (2003)CrossRefGoogle Scholar
  4. 4.
    Bystrom A., Almin K.E.: X-ray investigation of AuCd alloys rich in Au. Acta Chem. Scand. 1(1), 76–89 (1947)CrossRefGoogle Scholar
  5. 5.
    Chang L.C., Read T.A.: Plastic deformation and diffusionless phase changes in metals—the AuCd β-phase. Trans. Am. Inst. Min. Metall. Eng. 191(1), 47–52 (1951)Google Scholar
  6. 6.
    Chang Y.A., Himmel L.: Elastic constants of cadmium from 300° to 575° K. J. Appl. Phys. 37(10), 3786–3790 (1966)Google Scholar
  7. 7.
    Chang Y.A., Himmel L.: Temperature dependence of the elastic constants of Cu, Ag, and Au above room temperature. J. Appl. Phys. 37(9), 3565–3572 (1966)CrossRefGoogle Scholar
  8. 8.
    Cui J., Chu Y.S., Famodu O.O., Furuya Y., Hattrick-Simpers J., James R.D., Ludwig A., Thienhaus S., Wuttig M., Zhang Z., Takeuchi I.: Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5, 286–290 (2006)CrossRefGoogle Scholar
  9. 9.
    Daniels B.C., Chen Y.J., Sethna J.P., Gutenkunst R.N., Myers C.R.: Sloppiness, robustness, and evolvability in systems biology. Curr. Opin. Biotechnol. 19(4), 389–395 (2008)CrossRefGoogle Scholar
  10. 10.
    Delville R., Schryvers D., Zhang Z., James R.D.: Transmission electron microscopy investigation of microstructures in low-hysteresis alloys with special lattice parameters. Scr. Mater. 60(5), 293–296 (2008)CrossRefGoogle Scholar
  11. 11.
    Edwards D.A., Wallace W.E., Craig R.S.: Magnesium–Cadmium alloys. IV. the Cadmium-rich alloys; some lattice parameters and phase relationships between 25° and 300° K. structure of the MgCd3 superlattice. schottky defects and the anomalous entropy. J. Am. Chem. Soc. 74(21), 5256–5261 (1952)CrossRefGoogle Scholar
  12. 12.
    Elliott, R.S.: Lattice-level instabilities in bi-atomic alloys. PhD thesis, Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI, USA (2004)Google Scholar
  13. 13.
    Elliott R.S.: Multiscale bifurcation and stability of multilattices. J. Comput. Aided Mater. Des. 14(Suppl 1), 143–157 (2007)CrossRefGoogle Scholar
  14. 14.
    Elliott, R.S.: Branch following and bifurcation with symmetry package (BFBSymPac), 2009. Available by request from the author, (2009). Accessed 8 June 2009Google Scholar
  15. 15.
    Elliott R.S., Shaw J.A., Triantafyllidis N.: Stability of thermally-induced martensitic transformations in bi-atomic crystals. J. Mech. Phys. Solids 50(11), 2463–2493 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Elliott R.S., Triantafyllidis N., Shaw J.A.: Stability of crystalline solids–I: Continuum and atomic-lattice considerations. J. Mech. Phys. Solids 54(1), 161–192 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Elliott R.S., Triantafyllidis N., Shaw J.A.: Stability of crystalline solids-II: Application to temperature-induced martensitic phase transformations in a bi-atomic crystal. J. Mech. Phys. Solids 54(1), 193–232 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Entel P., Kadau K., Meyer R., Herper H.C., Schroter M., Hoffmann E.: Large-scale molecular-dynamics simulations of martensitic nucleation and shape-memory effects in transition metal alloys. Phase Trans. 65, 79–108 (1999)Google Scholar
  19. 19.
    Entel P., Meyer R., Kadau K.: Molecular dynamics simulations of martensitic transitions. Philos. Mag. B-Phys. Condens. Matter, Stat. Mech. Electron. Opt. Magn. Prop. 80(2), 183–194 (2000)Google Scholar
  20. 20.
    Goo B.C., Lexcellent C.: Micromechanics based modeling of two-way memory effect of a single crystalline shape memory alloy. Acta Metall. 45, 727–737 (1997)Google Scholar
  21. 21.
    Grujicic M., Dang P.: Computer simulation of martensitic transformation in Fe–Ni face-centered cubic alloys. Mater. Sci. Eng. A 201, 194–204 (1995)CrossRefGoogle Scholar
  22. 22.
    Guthikonda V.S., Elliott R.S.: Stability and elastic properties of the stress-free B2 (CsCl-type) crystal for the Morse pair potential model. J. Elast. 92, 151–186 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Guthikonda, V.S., Elliott, R.S.: Towards an effective interaction potential model for the shape memory alloy AuCd, 2008b. AEM Report 2008-1Google Scholar
  24. 24.
    Guthikonda V.S.R., Kiran M.K., Sivakumar S.M., Srinivasa A.R.: On smeared and micromechanical approaches to modeling martensitic transformations in SMA. Nonlinear Anal. Real World Appl. 9, 990–1011 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Huang K., Born M.: Dynamical Theory of Crystal Lattices. Oxford University Press, Oxford (1962)Google Scholar
  26. 26.
    Huang M.S., Brinson L.C.: A multivariant model for single crystal shape memory alloys. J. Mech. Phys. Solids 46, 1379–1409 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Huang X., Bungarao C., Godlevsky V., Rabe K.M.: Lattice instabilities of cubic NiTi from first principles. Phys. Rev. B-Condens. Matter 65(1), 1–5 (2002)Google Scholar
  28. 28.
    Huang X., Rabe K.M., Ackland G.J.: Crystal structures and shape-memory behavior of NiTi. Nat. Mater. 2(5), 307–311 (2003)CrossRefGoogle Scholar
  29. 29.
    Hultgren R., Desai P.D., Hawkins D.T., Gleiser M., Kelley K.K.: Selected Values of the Thermodynamic Properties of Metals and Alloys. Wiley Inc., Washington (1963)Google Scholar
  30. 30.
    Hultgren R., Desai P.D., Hawkins D.T., Gleiser M., Kelley K.K.: Selected Values of the Thermodynamic Properties of Binary Alloys. Wiley Inc., Washington (1973)Google Scholar
  31. 31.
    Ishida H., Hiwatari Y.: MD simulation of martensitc transformations in TiNi alloys with MEAM. Mol. Simul. 33, 459–461 (2007)CrossRefGoogle Scholar
  32. 32.
    Ivshin Y., Pence T.J.: A constitutive model for hysteretic phase transition behavior. Int. J. Eng. Sci. 32, 681–704 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    James R.D., Hane K.F.: Martensitic transformations and shape-memory materials. Acta Mater. 48(1), 197–222 (2000)CrossRefGoogle Scholar
  34. 34.
    James R.D., Kohn R.V., Shield T.W.: Modeling of branched needle microstructures at the edge of a martensite laminate. J. Phys. IV 5(C8), 253–259 (1995)CrossRefGoogle Scholar
  35. 35.
    James, R.D., Zhang, Z.: A way to search for multiferroic materials with “unlikely” combinations of physical properties. In: Planes, A., Manosa, L., Saxena, A. (eds.) Magnetism and Structure in Functional Materials, vol. 79 of Springer Series in Materials Science, chap. 9, pp. 159–176. Springer, Heidelberg (2006)Google Scholar
  36. 36.
    Leo P.H., Shield T.H., Bruno O.P.: Transient heat-transfer effects on the pseudoelastic behavior of shape-memory wires. Acta Metall. Mater. 41(8), 2477–2485 (1993)CrossRefGoogle Scholar
  37. 37.
    Liang C., Rogers A.: One-dimensional thermomechanical constitutive relations for shape memory materials. J. Intell. Mater. Syst. Struct. 1(2), 207–234 (1990)CrossRefGoogle Scholar
  38. 38.
    Lu Z.K., Weng G.J.: Martensitic transformations and stress–strain relations of shape-memory alloys. J. Mech. Phys. Solids 45, 1905–1928 (1997)CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Meyer R., Entel P.: Martensite–austenite transition and phonon dispersion curves of Fe1-xNix studied by molecular-dynamics simulations. Phys. Rev. B 57(9), 5140–5147 (1998)CrossRefGoogle Scholar
  41. 41.
    Nakanishi N., Mori T., Miura S., Murakami Y., Kachi S.: Pseudoelasticity in Au–Cd thermoelastic martensite. Philos. Mag. 28, 277–292 (1973)CrossRefGoogle Scholar
  42. 42.
    Ohba T., Emura Y., Miyazaki S., Otsuka K.: Crystal structure of \({\gamma_{2}^{'}}\) martensite in Au-47.5%Cd alloy. Mater. Trans. JIM 31(1), 12–17 (1990)Google Scholar
  43. 43.
    Olander A.: The crystal structure of AuCd. Zeitschrift Fur Kristallographie 83(1/2), 145–148 (1932)Google Scholar
  44. 44.
    Ozgen S., Adiguzel O.: Molecular dynamics simulations of diffusionless phase transformation in quenched NiAl alloy model. J. Phys. Chem. Solids 64(3), 459–464 (2003)CrossRefGoogle Scholar
  45. 45.
    Parlinski K., Parlinska M., Gotthardt R.: Phonons in austenite and martensite NiTi crystals. J. Phys. IV 112, 635–638 (2003)CrossRefGoogle Scholar
  46. 46.
    Parlinski K., Parlinska-Wojtan M.: Lattice dynamics of NiTi austenite, martensite, and R phase. Phys. Rev. B 67(064307), 1–8 (2002)Google Scholar
  47. 47.
    Patoor E., Eberhardt A., Berveiller M.: Thermomechanical behavior of shape memory alloys. Arch. Mech. 40(5–6), 775–794 (1988)Google Scholar
  48. 48.
    Patoor E., Eberhardt A., Berveiller M.: Micromechanical modelling of the shape memory alloys. Pitman Res. Notes Math. Series 296, 38–54 (1993)MathSciNetGoogle Scholar
  49. 49.
    Pitteri, M., Zanzotto, G.: Continuum Models for Phase Transitions and Twinning in Crystals, vol. 19 of Applied Mathematics. CRC Press, Boston (2002)Google Scholar
  50. 50.
    Ren X., Miura N., Zhang J., Otsuka K., Tanaka K., Koiwa M., Suzuki T., Chumlyakov Y.I.: A comparative study of elastic constants of Ti–Ni-based alloys prior to martensitic transformation. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 312(1-2), 196–206 (2001)Google Scholar
  51. 51.
    Rubini S., Ballone P.: Martensitic transformations and phonon localization in Ni–Al alloys by atomistic simulations. Meccanica 30, 439–448 (1995)zbMATHCrossRefGoogle Scholar
  52. 52.
    Shao Y., Clapp P.C., Rifkin J.A.: Molecular dynamics simulation of martensitic transformations in NiAl. Metall. Mater. Trans. A 27, 1477–1489 (1996)CrossRefGoogle Scholar
  53. 53.
    Shaw J.A.: A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities. Int. J. Solids Struct. 39(5), 1275–1305 (2002)zbMATHCrossRefGoogle Scholar
  54. 54.
    Shield T.W.: Orientation dependence of the pseudoelastic behavior of single-crystals of Cu–Al–Ni in tension. J. Mech. Phys. Solids 43(6), 869–895 (1995)CrossRefGoogle Scholar
  55. 55.
    Sun Q.P., Hwang K.C.: Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys-I. Derivation of general relations. J. Mech. Phys. Solids 41(1), 1–17 (1993)zbMATHCrossRefGoogle Scholar
  56. 56.
    Sun Q.P., Hwang K.C.: Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys-II. Study of the individual phenomena. J. Mech. Phys. Solids 41(1), 19–33 (1993)zbMATHCrossRefGoogle Scholar
  57. 57.
    Tadmor E.B., Smith G.S., Bernstein N., Kaxiras E.: Mixed finite element and atomistic formulations for complex crystals. Phys. Rev. B 59(1), 235–245 (1999)CrossRefGoogle Scholar
  58. 58.
    Tanaka K., Nagaki S.: A thermomechanical description of materials with internal variables in the process of phase-transitions. Ingenieur Arch. 51(5), 287–299 (1982)zbMATHCrossRefGoogle Scholar
  59. 59.
    Villars, P., Calvert, L.D., Pearson, W.B.: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases. Metals Park, Ohio (1985)Google Scholar
  60. 60.
    Vivet A., Lexcellent C.: Micromechanical modelling for tension-compression pseudoelastic behavior of AuCd single crystals. Eur. J. Appl. Phys. 4(2), 125–132 (1998)CrossRefGoogle Scholar
  61. 61.
    Wang J., Wang Y., Schaublin R., Abromeit C., Gotthardt R.: The effect of point defects on the martensitic phase transformation. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 438, 102–108 (2006)Google Scholar
  62. 62.
    Ye Y.Y., Chan C.T., Ho K.M.: Structural and electronic properties of the martensitic alloys TiNi, TiPd, and TiPt. Phys. Rev. B 56(7), 3678–3689 (1997)CrossRefGoogle Scholar
  63. 63.
    Zener C.: Contributions to the theory of beta-phase alloys. Phys. Rev. 71(12), 846–851 (1947)CrossRefGoogle Scholar
  64. 64.
    Zirinsky S.: The temperature dependence of the elastic constants of Gold–Cadmium alloys. Acta Metall. 4(2), 164–171 (1956)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Aerospace Engineering and MechanicsThe University of MinnesotaMinneapolisUSA

Personalised recommendations