Advertisement

Continuum Mechanics and Thermodynamics

, Volume 20, Issue 8, pp 459–477 | Cite as

Homogenization of the Prager model in one-dimensional plasticity

  • Ben SchweizerEmail author
Original Article

Abstract

We propose a new method for the homogenization of hysteresis models of plasticity. For the one-dimensional wave equation with an elasto-plastic stress-strain relation we derive averaged equations and perform the homogenization limit for stochastic material parameters. This generalizes results of the seminal paper by Franců and Krejčí. Our approach rests on energy methods for partial differential equations and provides short proofs without recurrence to hysteresis operator theory.

Keywords

Effective model Hysteresis Plasticity Prager model Differential inclusion Nonlinear wave equation 

PACS

46.35.+z 62.20.F- 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alber, H.-D.: Initial-boundary value problems for constitutive equations with internal variables. In: Materials with Memory. Lecture Notes in Mathematics, vol. 1682. Springer, Berlin (1998)Google Scholar
  2. 2.
    Allaire G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Beliaev A.: Homogenization of two-phase flows in porous media with hysteresis in the capillary relation. Eur. J. Appl. Math. 14(1), 61–84 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bouchitté G.: Convergence et relaxation de fonctionnelles du calcul des variations à croissance linéaire. Application à l’homogénéisation en plasticité. Ann. Fac. Sci. Toulouse Math. (5) 8(1), 7–36 (1986/1987)Google Scholar
  5. 5.
    Bourgeat A., Mikelic A., Wright S.: Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math. 456, 19–51 (1994)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Brokate, M., Sprekels, J.: Hysteresis and phase transitions. In: Applied Mathematical Sciences, vol. 121. Springer, New York (1996)Google Scholar
  7. 7.
    Conti S., Ortiz M.: Dislocation microstructures and the effective behavior of single crystals. Arch. Ration. Mech. Anal. 176(1), 103–147 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dal Maso G., Modica L.: Nonlinear stochastic homogenization. Ann. Mat. pura appl. 144, 347–389 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Durrett R.: Probability: Theory and Examples, 2nd edn. Duxbury Press, Belmont (1996)Google Scholar
  10. 10.
    Francôu J., Krejčí P.: Homogenization of scalar wave equations with hysteresis. Contin. Mech. Thermodyn. 11(6), 371–390 (1999)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Han, W., Reddy, B.D.: Mathematical theory and numerical analysis. In: Plasticity. Interdisciplinary Applied Mathematics vol. 9. Springer, New York (1999)Google Scholar
  12. 12.
    Jikov V., Kozlov S., Oleinik O.: Homogenization of Differential Operators and Integral Functionals. Springer, New York (1994)Google Scholar
  13. 13.
    Kopfová J.: A homogenization result for a parabolic equation with Preisach hysteresis. ZAMM Z. Angew. Math. Mech. 87(5), 352–359 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kozlov S.M.: Averaging of random operators. Math. USSR Sbornik 37, 167–179 (1980)zbMATHCrossRefGoogle Scholar
  15. 15.
    Mihailovici, M., Schweizer, B.: Effective model for the cathode catalyst layer in fuels cells. Asymptot. Anal. (2008)Google Scholar
  16. 16.
    Nguetseng G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3), 608–623 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Sanchez Palencia, E.: Non Homogenieous Media and Vibration Theory. Lecture Notes in Physics, vol. 17. Springer, New York (1980)Google Scholar
  18. 18.
    Schweizer B.: A stochastic model for fronts in porous media. Ann. Mat. Pura Appl. (4) 184(3), 375–393 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Schweizer B.: Averaging of flows with capillary hysteresis in stochastic porous media. Eur. J. Appl. Math. 18(3), 389–415 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Temam R.: Mathematical Problems in Plasticity. Bordas, Paris (1985)Google Scholar
  21. 21.
    Visintin, A.: Differential models of hysteresis. In: Applied Mathematical Sciences, vol. 111. Springer, Berlin (1994)Google Scholar
  22. 22.
    Visintin A.: On hysteresis in elasto-plasticity and in ferromagnetism. Non-linear Mech. 37, 1283–1298 (2002)zbMATHCrossRefGoogle Scholar
  23. 23.
    Visintin A.: Quasilinear hyperbolic equations with hysteresis. Ann. Inst. H. Poincaré Anal. Non Linéaire 19(4), 451–476 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Visintin A.: On homogenization of elasto-plasticity. J. Phys. Conf. Ser. 22, 222–234 (2005)CrossRefGoogle Scholar
  25. 25.
    Visintin A.: Homogenization of the nonlinear Kelvin-Voigt model of viscoelasticity and of the Prager model of plasticity. Cont. Mech. Thermodyn. 18(3–4), 223–252 (2006)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Fakultät für Mathematik, TU DortmundDortmundGermany

Personalised recommendations