Skip to main content
Log in

Incompressible ionized fluid mixtures

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The model-combining Navier-Stokes equation for barycentric velocity together with Nernst-Planck's equation for concentrations of particular mutually reacting constituents, the heat equation, and the Poisson equation for self-induced quasistatic electric field is formulated and its thermodynamics is discussed. Then, existence of a weak solution to an initial-boundary-value problem for this system is proved in two special cases: zero Reynolds' number and constant temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrej, L., Dvořák I., Marší k, F: Biotermodynamika. Akademia, Praha, 1982. (Revised edition: F.Marší k, I.Dvořák, Akademia, Praha, 1998)

  2. Aubin, J.-P.: Un théorème de compacité. C.R. Acad. Sci. 256, 5042–5044 (1963)

    MathSciNet  MATH  Google Scholar 

  3. Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics. Wiley, New York (1975)

    MATH  Google Scholar 

  4. Bayly, B.J., Levermore, C.D., Passot T.: Density variations in weakly compressible flows. Phys. Fluids A 4, 945–954 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, M.-H., Homsy, G.M.: Effects of Joule heating on the stability of time-modulated electro-osmotic flow. Phys. Fluids 17, 074107 (2005)

    Google Scholar 

  6. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford Univ. Press, Oxford (2004)

    MATH  Google Scholar 

  7. deGroot, R.S., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland, Amsterdam (1962)

  8. Drumheller, D.S., Bedford, A.: A thermomechanical theory for reacting immiscible mixtures. Archive Ration. Mech. Anal. 73, 257–284 (1980)

    MathSciNet  MATH  Google Scholar 

  9. Eckart, C.: The thermodynamics of irreversible processes II. Fluid mixtures. Phys. Rev. 58, 269–275 (1940)

    MATH  Google Scholar 

  10. Glaser, R.: Biophysics. Springer, Berlin Heidelberg New York (2001)

    Google Scholar 

  11. Glitzky, A.: Electro-reaction-diffusion systems with nonlocal constraints. Math. Nachrichten 277, 14–46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giovangigli, V.: Multicomponent Flow Modeling. Birkhäuser, Boston (1999)

  13. Gu, W.Y., Lai, W.M., Mow, V.C.: A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviours. J. Biomech. Engr. 120, 169–180 (1998)

    Article  Google Scholar 

  14. Henri, D.: Geometric Theory of Similinear Parabolic Equations. Springer, Berlin Heidelberg New York (1981)

  15. Kagei, Y., Růžička, M., Thäter, G.: Natural convection with dissipative heating. Comm. Math. Phys. 214, 287–313 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, H., Storey, B.D., Oddy, M.H., Chen, C.-H., Santiago, J.G.: Instability of electrokinetic micro-channel flows with conductivity gradients. Phys. Fluids 16, 1922–1935 (2004)

    Article  Google Scholar 

  17. Lions, J.L.: Quelques Méthodes de Résolution des Problémes aux Limites non linéaires. Dunod, Paris (1969)

  18. Mills, N.: Incompressible mixtures of Newtonian fluids. Int. J. Eng. Sci. 4, 97–112 (1966)

    Article  MATH  Google Scholar 

  19. Müller, I.: A thermodynamical theory of mixtures of fluids. Archive Ration. Mech. Anal. 28, 1–39 (1967)

    Article  Google Scholar 

  20. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics 2nd edn. Springer, Berlin Heidelberg New York (1998)

  21. Nečas, J., Roubíček, T.: Buoyancy-driven viscous flow with L 1-data. Nonlinear Anal. Th. Meth. Appl. 46, 737–755 (2001)

    Article  MATH  Google Scholar 

  22. Nuziato, J.W., Walsh, E.K.: On ideal multiphase mixtures with chemical reactions and diffusion. Archive Rat. Mech. Anal. 73, 285–311 (1980)

    Google Scholar 

  23. Onsager, L.: Reciprocal relations in irreversible processes. Phys. Rev. II 37, 405–426 (1931) and 38 2265–2279 (1931)

    Google Scholar 

  24. Prigogine, I.: Étude Thermodynamique des Processes Irreversibles. Desoer, Lieg (1947)

  25. Probstein, R.F.: Physicochemical Hydrodynamics, 2nd edn. Wiley, Hoboken (2003)

    Google Scholar 

  26. Rajagopal, K.R., Růžička, M., Srinivasa, A.R.: On the Oberbeck-Boussinesq approximation. Math. Models Meth. Appl. Sci. 6, 1157–1167 (1996)

    Article  MATH  Google Scholar 

  27. Rajagopal, K.R., Tao, L.: Mechanics of Mixtures. World Scientific, River Edge (1995)

  28. Rajagopal, K.R., Wineman, A.S., Gandhi, M.: On boundary conditions for a certain class of problems in mixture theory. Int. J. Eng. Sci. 24, 1453–1463 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Roubíček, T.: Incompressible Fluid Mixtures of Ionized Constituents. In: Wang, Y., Hutter, K. (eds) Trends in Applications of Mathematics to Mechanics, Shaker, Aachen, 429–440 (2005)

  30. Roubíček, T.: Incompressible ionized fluid mixtures: a non-Newtonian approach. IASME Trans. (WSEAS) 2, 1190–1197 (2005)

    Google Scholar 

  31. Rousar, I., Micka, K., Kimla, A.: Electrochemical Engineering. Elsevier, Amsterdam (1986)

  32. Samohýl, I.: Racionální termodynamika chemicky reagují cí ch směsí. Academia, Praha (1982)

  33. Samohýl, I.: Thermodynamics of Irreversible Processes in Fluid Mixtures, Teubner, Leipzig (1987)

  34. Samohýl, I.: Thermodynamics of mixtures of reacting and non-reacting fluids with heat conduction, diffusion and viscosity. Int. J. Nonlinear Mech. 32, 241–257 (1997)

    Article  MATH  Google Scholar 

  35. Samohýl, I.: Application of Truesdellapos; model of mixture to ionic liquid mixture. Comp. Math. Appl. (submitted)

  36. Samohýl, I., šilhavý, M.: Mixture invariance and its applications. Archive Rat. Mech. Anal. 109, 299–321 (1990)

    Article  MATH  Google Scholar 

  37. Saville, D.A.: Electrokinetic effects with small particles. Ann. Rev. Fluid Mech. 9, 321–337 (1977)

    Article  Google Scholar 

  38. Solonnikov, V.A.: Estimates of the solutions of a nonstationary linearized system of Navier-Stokes equations. Trudy Mat. Inst. Steklov 70. In: AMS Transl. Ser.2, 75, 1–17 (1964)

  39. Solonnikov, V.A.: A-priori estimates for second-order parabolic equations. Trudy Mat. Inst. Steklov 70. In: AMS Transl. Ser.2, 65, 51–137 (1964)

  40. Truesdell, C., Toupin, R.: The Classical Field Theories. Handbuch der Physik III/1, Springer, Berlin Heidelberg New York (1960)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Roubíček.

Additional information

Communicated by S. L. Gavrilyuk

Mathematics Subject Classification (2000) 35Q35 · 76T30 · 80A32

Physics and Astronomy Classification Scheme (2001) 47.27Ak ⋅ 47.70Fw

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roubíček, T. Incompressible ionized fluid mixtures. Continuum Mech. Thermodyn. 17, 493–509 (2006). https://doi.org/10.1007/s00161-006-0010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-006-0010-0

Keywords

Navigation