Skip to main content
Log in

Constitutive equations for non-affine polymer networks with slippage of chains

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A model is derived for isothermal three-dimensional deformation of polymers with finite strains. A polymer fluid is treated as a permanent network of chains bridged by junctions (entanglements). Macro-deformation of the medium induces two motions at the micro-level: (i) sliding of junctions with respect to their reference positions that reflects non-affine deformation of the network, and (ii) slippage of chains with respect to entanglements that is associated with unfolding of back-loops. Constitutive equations are developed by using the laws of thermodynamics. Three important features characterize the model: (i) the symmetry of relations between the elongation of strands and an appropriate configurational tensor, (ii) the strong nonlinearity of the governing equations, and (iii) the account for the volumetric deformation of the network induced by stretching of chains. The governing equations are applied to the numerical analysis of extensional and shear flows. It is demonstrated that the model adequately describes the time-dependent response of polymer melts observed in conventional rheological tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, M.W., Segalman, D.: A model for viscoelastic fluid behavior which allows non-affine deformation. J. Non-Newtonian Fluid Mech. 2, 255–270 (1977)

    Article  Google Scholar 

  2. Phan Thien, N., Tanner, R.I.: A new constitutive equation derived from network theory. J. Non-Newtonian Fluid Mech. 2, 353–365 (1977)

    Article  Google Scholar 

  3. Leonov, A.I.: Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol. Acta 15, 85–98 (1976)

    Article  Google Scholar 

  4. Giesekus, H.: A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newtonian Fluid Mech. 11, 69–109 (1982)

    Article  Google Scholar 

  5. Geurts, K.R., Wedgewood, L.E.: A finitely extensible network strand model with nonlinear backbone forces and entanglement kinetics. J. Chem. Phys. 106, 339–346 (1997)

    Article  Google Scholar 

  6. Green, M.S., Tobolsky, A.V.: A new approach to the theory of relaxing polymeric media. J. Chem. Phys. 14, 80–92 (1946)

    Article  Google Scholar 

  7. Tanaka, F., Edwards, S.F.: Viscoelastic properties of physically cross-linked networks. Transient network theory. Macromolecules 25, 1516–1523 (1992)

    Article  Google Scholar 

  8. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Clarendon Press Oxford (1986)

    Google Scholar 

  9. Lele, A.K., Mashelkar, L.A.: Energetically crosslinked transient network (ECTN) model: implications in transient shear and elongational flows. J. Non-Newtonian Fluid Mech. 75, 99–115 (1998)

    Article  Google Scholar 

  10. Archer, L.A., Mhetar, V.R.: Differential constitutive equation for entangled polymers with partial strand extension. Rheol. Acta 37, 170–181 (1998)

    Article  Google Scholar 

  11. Sun, N., Chan Man Fong, C.F., De Kee, D.: Network constitutive equation with internal viscosity: application to stress jump prediction. J. Non-Newtonian Fluid Mech. 95, 135–146 (2000)

    Article  Google Scholar 

  12. Sun, N., Chan Man Fong, C.F., De Kee, D.: A non-affine transient network model. Rheol. Acta 39, 174–179 (2000)

    Article  Google Scholar 

  13. Likhtman, A.E., Graham, R.S.: Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–Poly equation. J. Non-Newtonian Fluid Mech. 114, 1–12 (2003)

    Article  Google Scholar 

  14. Hua, C.C., Schieber, J.D., Venerus, D.C.: Segment connectivity, chain-length breathing, segmental stretch, and constraint release in reptation models. 3. Shear flows. J. Rheol. 43, 701–717 (1999)

    Article  Google Scholar 

  15. Wagner, M.H., Rubio, P., Bastian, H.: The molecular stress function for polydisperse polymer melts with dissipative convective constraint release. J. Rheol. 45, 1387–1412 (2001)

    Article  Google Scholar 

  16. McLeish, T.C.B., Larson, R.G.: Molecular constitutive equations for a class of branched polymers: the pom–pom model. J. Rheol. 42, 81–110 (1998)

    Article  Google Scholar 

  17. Inkson, N.J., McLeish, T.C.B., Harlen, O.G., Groves, D.J.: Predicting low density polyethylene melt rheology in elongational and shear flows with “pom–pom” constitutive equations. J. Rheol. 43, 873–896 (1999)

    Article  Google Scholar 

  18. Blackwell, R.J., McLeish, T.C.B., Harlen, O.G.: Molecular drag–strain coupling in branched polymer melts. J. Rheol. 44, 121–136 (2000)

    Article  Google Scholar 

  19. Rubio, P., Wagner, M.H.: LDPE melt rheology and the pom-pom model. J. Non-Newtonian Fluid Mech. 92, 245–259 (2000)

    Article  Google Scholar 

  20. Ianniruberto, G., Marrucci, G.: A simple constitutive equation for entangled polymers with chain stretch. J. Rheol. 45, 1305–1318 (2001)

    Article  Google Scholar 

  21. Verbeeten, W.M.H., Peters, G.W.M., Baaijens, F.P.T.: Viscoelastic analysis of complex polymer melt flows using the eXtended Pom-Pom model. J. Non-Newtonian Fluid Mech. 108, 301–326 (2002)

    Article  Google Scholar 

  22. Rallison, J.M., Hinch, E.J.: Do we understand the physics of the constitutive equations? J. Non-Newtonian Fluid Mech. 29, 37–55 (1988)

    Article  Google Scholar 

  23. Graham, R.S., Likhtman, A.E., McLeish, T.C.B., Milner, S.T.: Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release. J. Rheol. 47, 1171–1200 (2003)

    Article  Google Scholar 

  24. Read, D.J.: Convective constraint release with chain stretch: Solution of the Rouse-tube model in the limit of infinite tubes. J. Rheol. 48, 349–377 (2004)

    Article  Google Scholar 

  25. Beris, A.N., Edwards, B.J.: Thermodynamics of Flowing Systems. Oxford University Press, New York (1994)

    Google Scholar 

  26. Dressler, M., Edwards, B.J., Öttinger, H.C.: Macroscopic thermodynamics of flowing polymeric liquids. Rheol. Acta 38, 117–136 (1999)

    Article  Google Scholar 

  27. Bischoff, J.E., Arruda, E.M., Grosh, K.: A new constitutive model for the compressibility of elastomers at finite deformations. Rubber Chem. Technol. 74, 541–559 (2000)

    Google Scholar 

  28. Ehlers, W., Eipper, G.: The simple tension problem at large volumetric strains computed from finite hyperelastic material laws. Acta Mech. 130, 17–27 (1998)

    Article  Google Scholar 

  29. Burgess, I.W., Levinson, M.: The instability of slightly compressible rectangular rubberlike solids under biaxial loading. Int. J. Solids Struct. 8, 133–148 (1972)

    Article  Google Scholar 

  30. Brink, U., Stein, E.: On some mixed finite element methods for incompressible and nearly incompressible finite elasticity. Comput. Mech. 19, 105–119 (1996)

    Google Scholar 

  31. Rüter, M., Stein, E.: Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity. Comput. Methods Appl. Mech. Engng. 190, 519–541 (2000)

    Article  Google Scholar 

  32. Murphy, J.G.: Strain energy functions for a Poisson power law function in simple tension of compressible hyperelastic materials. J. Elasticity 60, 151–164 (2000)

    Article  Google Scholar 

  33. Bin Wadud, S.E., Baird, D.G.: Shear and extensional rheology of sparsely branched metallocene-catalyzed polyethylenes. J. Rheol. 44, 1151–1167 (2000)

    Article  Google Scholar 

  34. Menezes, E.V., Graessley, W.W.: Study of nonlinear response of a polymer solution to various uniaxial shear flow histories. Rheol. Acta 19, 38–50 (1980)

    Article  Google Scholar 

  35. Takahashi, M., Masuda, T., Bessho, N., Osaki, K.: Stress measurements at the start of shear flow: comparison of data from a modified Weissenberg rheogoniometer and from flow birefringence. J. Rheol. 24, 517–520 (1980)

    Article  Google Scholar 

  36. Mason, T.G., Rai, P.K.: Shear-induced elastification of concentrated emulsions probed by sinusoidal amplitude variation rheometry. J. Rheol. 47, 513–533 (2003)

    Article  Google Scholar 

  37. Giacomin, A.J., Jeyaseelan, R.S., Samurkas, T., Dealy, J.M.: Validity of separable BKZ model for large amplitude oscillatory shear. J. Rheol. 37, 811–826 (1993)

    Article  Google Scholar 

  38. Heinrich, G., Klüppel, M.: Recent advances in the theory of filler networking in elastomers. Adv. Polym. Sci. 160, 1–44 (2002)

    Google Scholar 

  39. Sternstein, S.S., Zhu, A.-J.: Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 35, 7262–7273 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Drozdov.

Additional information

Communicated by S. H. Faria

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drozdov, A.D., Gottlieb, M. Constitutive equations for non-affine polymer networks with slippage of chains. Continuum Mech. Thermodyn. 17, 217–246 (2005). https://doi.org/10.1007/s00161-004-0200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-004-0200-6

Navigation