Continuum Mechanics and Thermodynamics

, Volume 16, Issue 6, pp 517–528 | Cite as

Light scattering and sound propagation in polyatomic gases with classical degrees of freedom

  • W. MarquesJr.Email author
Original article


In this work we analyze time-dependent problems like sound propagation and light scattering in dilute polyatomic gases with classical internal degrees of freedom by using a kinetic model of the Boltzmann equation that replaces the collision operator with a single relaxation-time term. Comparison of the theoretical results with available experimental data shows that the model equation can be used to describe the acoustic properties and the light scattering spectrum of dilute polyatomic gases as long as the external oscillation frequency is smaller than the frequency required for the translational and the internal degrees of freedom to come to thermal equilibrium.


polyatomic gases kinetic model equation light scattering sound propagation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang Chang, C.S., Uhlenbeck, G.E., De Boer, J.: The heat conductivity and viscosity of polyatomic gases. Studies in statistical mechanics. Vol. II, North-Holland Publishing Company, Amsterdam (1964)Google Scholar
  2. 2.
    Taxman, N.: Classical theory of transport phenomena in dilute polyatomic gases. Phys. Rev. 110, 1235-1239 (1958)CrossRefzbMATHGoogle Scholar
  3. 3.
    Morse, T.F.: Kinetic model for gases with internal degrees of freedom. Phys. Fluids 7, 159-169 (1964)Google Scholar
  4. 4.
    Hanson, F.B., Morse, T.F.: Kinetic models for a gas with internal structure. Phys. Fluids 10, 345-354 (1967)Google Scholar
  5. 5.
    Brau, C.A.: Kinetic theory of polyatomic gases - models for collisions processes. Phys. Fluids 10, 48 (1967)Google Scholar
  6. 6.
    Wood, W.P.: Kinetic theory analysis of light scattering in polyatomic gases. Aust. J. Phys. 24, 555-567 (1971)Google Scholar
  7. 7.
    Marques, Jr. W.: Light scattering from extended kinetic models: polyatomic ideal gases. Physica A 264, 40-51 (1999)Google Scholar
  8. 8.
    Cercignani, C.: Mathematical Methods in Kinetic Theory. Plenum Publishing Corporation, New York (1990)Google Scholar
  9. 9.
    Liu, G.: A method for constructing a model form from the Boltzmann equation. Phys Fluids A 2, 277-280 (1990)CrossRefGoogle Scholar
  10. 10.
    Greespan, M.: Rotational relaxation in nitrogen, oxygen anad air. J. Acoust. Soc. Am. 31, 155-160 (1959)Google Scholar
  11. 11.
    Greytak, T.J., Benedek, G.B.: Spectrum of light scattred from thermal fluctuations in gases. Phys. Rev. Lett. 17, 179-182 (1966)CrossRefGoogle Scholar
  12. 12.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge (1970)Google Scholar
  13. 13.
    Ferziger, J.H., Kaper, H.G.: The Mathematical Theory of Transport Processes in Gases. North-Holland Publishing Company, Amsterdam (1972)Google Scholar
  14. 14.
    Boley, C.D., Desai, R.C., Tenti, G.: Kinetic models and Brillouin scattering in a molecular gas. Can. J. Phys. 50, 2158-2173 (1972)Google Scholar
  15. 15.
    Fried, B.D., Conte, S.D.: The Plasma Dispersion Function. Academic Press, New York (1961)Google Scholar
  16. 16.
    Van Hove, L.: Correlation in space and time and Born approximation scattering in system of interacting particles. Phys. Rev. 95, 249-262 (1954)CrossRefzbMATHGoogle Scholar
  17. 17.
    Van Leeuwen, J.M.J., Yip, S.: Derivation of kinetic equations for slow-neutron scattering. Phys. Rev. 139, A1138-A1151 (1965)Google Scholar
  18. 18.
    CRC Handbook of Chemistry and Physics, 80th Edition, CRC Press, Boca Raton (1999)Google Scholar
  19. 19.
    Sugawara, A., Yip, S.: Kinetic model analysis of light scattering by molecular gases. Phys. Fluids 10, 1911-1921 (1967)Google Scholar
  20. 20.
    Marques, Jr. W., Kremer, G.M.: Spectral distribution of scattered light in polyatomic gases. Physica A 197, 352-363 (1993)CrossRefGoogle Scholar
  21. 21.
    Meyer, E., Sessler, G.: Schallausbreitung in Gasen bei hohen Frequenzen und niedrigen Drucken. Z. Physik 149, 15-39 (1957)Google Scholar
  22. 22.
    Greenspan, M.: Propagation of sound in five monatomic gases. J. Acoust. Soc. Am. 28, 644-648 (1956)Google Scholar
  23. 23.
    Clark, N.A.: Inelastic light scattering from density fluctuations in dilute gases. The kinetic-hydrodynamic transition in a monatomic gas. Phys. Rev. A 12, 232-244 (1975)CrossRefGoogle Scholar
  24. 24.
    Marques, Jr. W.: Dispersion and absorption of sound in monatomic ideal gases: an extended kinetic description. J. Acoust. Soc. Am. 106, 3282-3288 (1999)CrossRefGoogle Scholar
  25. 25.
    Marques, Jr. W., Kremer, G.M.: Light scattering from extended kinetic models: monatomic ideal gases. Continuum Mech. Thermodyn. 10, 319-329 (1998)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations