Skip to main content
Log in

Light scattering and sound propagation in polyatomic gases with classical degrees of freedom

  • Original article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract.

In this work we analyze time-dependent problems like sound propagation and light scattering in dilute polyatomic gases with classical internal degrees of freedom by using a kinetic model of the Boltzmann equation that replaces the collision operator with a single relaxation-time term. Comparison of the theoretical results with available experimental data shows that the model equation can be used to describe the acoustic properties and the light scattering spectrum of dilute polyatomic gases as long as the external oscillation frequency is smaller than the frequency required for the translational and the internal degrees of freedom to come to thermal equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Chang, C.S., Uhlenbeck, G.E., De Boer, J.: The heat conductivity and viscosity of polyatomic gases. Studies in statistical mechanics. Vol. II, North-Holland Publishing Company, Amsterdam (1964)

  2. Taxman, N.: Classical theory of transport phenomena in dilute polyatomic gases. Phys. Rev. 110, 1235-1239 (1958)

    Article  MATH  Google Scholar 

  3. Morse, T.F.: Kinetic model for gases with internal degrees of freedom. Phys. Fluids 7, 159-169 (1964)

    Google Scholar 

  4. Hanson, F.B., Morse, T.F.: Kinetic models for a gas with internal structure. Phys. Fluids 10, 345-354 (1967)

    Google Scholar 

  5. Brau, C.A.: Kinetic theory of polyatomic gases - models for collisions processes. Phys. Fluids 10, 48 (1967)

    Google Scholar 

  6. Wood, W.P.: Kinetic theory analysis of light scattering in polyatomic gases. Aust. J. Phys. 24, 555-567 (1971)

    Google Scholar 

  7. Marques, Jr. W.: Light scattering from extended kinetic models: polyatomic ideal gases. Physica A 264, 40-51 (1999)

    Google Scholar 

  8. Cercignani, C.: Mathematical Methods in Kinetic Theory. Plenum Publishing Corporation, New York (1990)

  9. Liu, G.: A method for constructing a model form from the Boltzmann equation. Phys Fluids A 2, 277-280 (1990)

    Article  Google Scholar 

  10. Greespan, M.: Rotational relaxation in nitrogen, oxygen anad air. J. Acoust. Soc. Am. 31, 155-160 (1959)

    Google Scholar 

  11. Greytak, T.J., Benedek, G.B.: Spectrum of light scattred from thermal fluctuations in gases. Phys. Rev. Lett. 17, 179-182 (1966)

    Article  Google Scholar 

  12. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge (1970)

  13. Ferziger, J.H., Kaper, H.G.: The Mathematical Theory of Transport Processes in Gases. North-Holland Publishing Company, Amsterdam (1972)

  14. Boley, C.D., Desai, R.C., Tenti, G.: Kinetic models and Brillouin scattering in a molecular gas. Can. J. Phys. 50, 2158-2173 (1972)

    Google Scholar 

  15. Fried, B.D., Conte, S.D.: The Plasma Dispersion Function. Academic Press, New York (1961)

  16. Van Hove, L.: Correlation in space and time and Born approximation scattering in system of interacting particles. Phys. Rev. 95, 249-262 (1954)

    Article  MATH  Google Scholar 

  17. Van Leeuwen, J.M.J., Yip, S.: Derivation of kinetic equations for slow-neutron scattering. Phys. Rev. 139, A1138-A1151 (1965)

    Google Scholar 

  18. CRC Handbook of Chemistry and Physics, 80th Edition, CRC Press, Boca Raton (1999)

  19. Sugawara, A., Yip, S.: Kinetic model analysis of light scattering by molecular gases. Phys. Fluids 10, 1911-1921 (1967)

    Google Scholar 

  20. Marques, Jr. W., Kremer, G.M.: Spectral distribution of scattered light in polyatomic gases. Physica A 197, 352-363 (1993)

    Article  Google Scholar 

  21. Meyer, E., Sessler, G.: Schallausbreitung in Gasen bei hohen Frequenzen und niedrigen Drucken. Z. Physik 149, 15-39 (1957)

    Google Scholar 

  22. Greenspan, M.: Propagation of sound in five monatomic gases. J. Acoust. Soc. Am. 28, 644-648 (1956)

    Google Scholar 

  23. Clark, N.A.: Inelastic light scattering from density fluctuations in dilute gases. The kinetic-hydrodynamic transition in a monatomic gas. Phys. Rev. A 12, 232-244 (1975)

    Article  Google Scholar 

  24. Marques, Jr. W.: Dispersion and absorption of sound in monatomic ideal gases: an extended kinetic description. J. Acoust. Soc. Am. 106, 3282-3288 (1999)

    Article  Google Scholar 

  25. Marques, Jr. W., Kremer, G.M.: Light scattering from extended kinetic models: monatomic ideal gases. Continuum Mech. Thermodyn. 10, 319-329 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Marques Jr..

Additional information

Communicated by G.M. Kremer

Received: 12 January 2004, Accepted: 2 February 2004, Published online: 16 April 2004

PACS:

51.10. + y; 51.40. + p

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, W. Light scattering and sound propagation in polyatomic gases with classical degrees of freedom. Continuum Mech. Thermodyn. 16, 517–528 (2004). https://doi.org/10.1007/s00161-004-0177-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-004-0177-1

Keywords:

Navigation