Advertisement

Continuum Mechanics and Thermodynamics

, Volume 16, Issue 3, pp 245–255 | Cite as

Dynamics and thermodynamics of a model with long-range interactions

  • A. Pluchino
  • V. Latora
  • A. RapisardaEmail author
Original article

Abstract.

The dynamics and thermodynamics of particles/spins interacting via long-range forces display several unusual features compared with systems with short-range interactions. The Hamiltonian mean field (HMF) model, a Hamiltonian system of N classical inertial spins with infinite-range interactions represents a paradigmatic example of this class of systems. The equilibrium properties of the model can be derived analytically in the canonical ensemble: in particular, the model shows a second-order phase transition from a ferromagnetic to a paramagnetic phase. Strong anomalies are observed in the process of relaxation towards equilibrium for a particular class of out-of-equilibrium initial conditions. In fact, the numerical simulations show the presence of quasi-stationary states (QSS’s), i.e. metastable states that become stable if the thermodynamic limit is taken before the infinite time limit. The QSS’s differ strongly from Boltzmann-Gibbs equilibrium states: they exhibit negative specific heats, vanishing Lyapunov exponents and weak mixing, non-Gaussian velocity distributions and anomalous diffusion, slowly decaying correlations, and aging. Such a scenario provides strong hints for the possible application of Tsallis generalized thermostatistics. The QSS’s have recently been interpreted as a spin-glass phase of the model. This link indicates another promising line of research, which does not preclude to the previous one.

Keywords:

phase transitions Hamiltonian dynamics long-range interaction out-of-equilibrium statistical mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik 31, 253-258 (1925)Google Scholar
  2. 2.
    Dauxois, T., Ruffo, S., Arimondo, E., Wilkens, M. (eds): Dynamics and Thermodynamics of Systems with Long Range Interactions (Lecture Notes in Physics, Vol. 602), Springer Berlin Heidelberg New York (2002)Google Scholar
  3. 3.
    Kac, M., Uhlenbeck, G., Hemmer, P.C.: On the Van der Waals theory of vapor-liquid equilibrium. J. Math. Phys. 4, 216-228 (1963)zbMATHGoogle Scholar
  4. 4.
    Anteneodo, C., Tsallis, C.: Breakdown of exponential sensitivity to initial conditions: role of the range of interactions. Phys. Rev. Lett. 80, 5313-5316 (1998); Tamarit, F., Anteneodo, C.: Rotators with long-range interactions: connection with the mean-field approximation. Phys. Rev. Lett. 84, 208-211 (2000)CrossRefGoogle Scholar
  5. 5.
    Campa, A., Giansanti, A., Moroni, D.: Canonical solution of classical magnetic models with long-range couplings. J. Phys A: Math. Gen. 36, 6897-6921 (2003) and references thereinCrossRefGoogle Scholar
  6. 6.
    Dauxois, T., Latora, V., Rapisarda, A., Ruffo, S., Torcini, A.: In: Dauxois, T., Ruffo, S., Arimondo, E., Wilkens, M. (eds) Dynamics and Thermodynamics of Systems with Long Range Interactions (Lecture Notes in Physics, Vol. 602), Springer Berlin Heidelberg New York (2002), p.458 and references thereinGoogle Scholar
  7. 7.
    Latora, V., Rapisarda, A., Ruffo, S.: Superdiffusion and out-of-equilibrium chaotic dynamics with many degrees of freedom. Phys. Rev. Lett. 83, 2104-2107 (1999)CrossRefGoogle Scholar
  8. 8.
    Latora, V., Rapisarda, A.: Microscopic dynamics of a phase transition: equilibrium vs out-of-equilibrium regime. Nucl. Phys. A 681, 406-416 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Latora, V., Rapisarda, A., Tsallis, C.: Non-Gaussian equilibrium in a long-range Hamiltonian system. Phys. Rev. E 64, 056134-056138 (2001); Latora, V., Rapisarda, A., Tsallis, C.: Fingerprints of nonextensive thermodynamics in a long-range Hamiltonian system. Physica A 305, 129-136 (2002)CrossRefGoogle Scholar
  10. 10.
    Montemurro, M.A., Tamarit, F.A., Anteneodo, C.: Aging in an infinite-range Hamiltonian system of coupled rotators. Phys. Rev. E 67, 031106-031109 (2003)CrossRefGoogle Scholar
  11. 11.
    Pluchino, A., Latora, V., Rapisarda, A.: Metastable states, anomalous distributions and correlations in the HMF model. Physica D (2004) (in press) [cond-mat/0303081]Google Scholar
  12. 12.
    Moyano, L.G., Baldovin, F., Tsallis, C.: Zeroth principle of thermodynamics in aging quasistationary states. [cond-mat/0305091] (submitted)Google Scholar
  13. 13.
    Yamaguchi, Y.Y.: Relaxation and diffusion in a globally coupled Hamiltonian system. Phys. Rev. E 68, 066210-066219 (2003)CrossRefGoogle Scholar
  14. 14.
    Cabral, B.J.C., Tsallis, C.: Metastability and weak mixing in classical long-range many-rotator systems. Phys. Rev. E 66, 065101-065104 (R) (2002)CrossRefGoogle Scholar
  15. 15.
    Tsallis, C., Rapisarda, A., Latora, V., Baldovin, F.: Nonextensivity: from low-dimensional maps to Hamiltonian systems. In: Dauxois, T., Ruffo, S., Arimondo, E., Wilkens, M. (eds) Dynamics and Thermodynamics of Systems with Long Range Interactions (Lecture Notes in Physics, Vol. 602), Springer Berlin Heidelberg New York (2002), p.140-162Google Scholar
  16. 16.
    Borges, E., Tsallis, C.: Negative specific heat in a Lennard-Jones-like gas with long range interactions. Physica A 305, 148-151 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Nobre, F.D., Tsallis, C.,: Classical infinite-range-interaction Heisenberg ferromagnetic model: metastability and sensitivity to initial conditions. [cond-mat/0301492]Google Scholar
  18. 18.
    Tsallis, C.: Possible generalization of Botlzmann-Gibbs statistics. J. Stat. Phys. 52, 479-487 (1988); for recent reviews, see: Tsallis, C.: Nonextensive statistical mechanics and thermodynamics. In: Abe, S., Okamoto, Y. (eds) Lecture Notes in Physics, Springer Berlin Heidelberg New York (2001); Kaniadakis, G., Lissia, M., Rapisarda, A. (eds): Proceedings of NEXT2001, special issue of Physica A 305 (2002); Tsallis, C., M. Gell-Mann, M., (eds) Nonextensive Entropy - Interdisciplinary Applications, Oxford University Press (2004); see also http://tsallis.cat.cbpf.br/biblio.htm for a regularly updated and complete bibliographyMathSciNetzbMATHGoogle Scholar
  19. 19.
    For the recent debate about nonextensive thermodynamics, see: Cho, A.: A fresh take on disorder, or disorderly science? Science 297, 1268-1269 (2002); Abe, S., Rajagopal, A.K., Plastino, A., Latora, V., Rapisarda, A., Robledo, A.: Revisiting disorder and Tsallis statistics. Science 300, 249-251 (2003)Google Scholar
  20. 20.
    Bouchaud, J.P., Cugliandolo, L.F., Kurchan, J., Mezárd, M.M.: Out-of-equilibrium Dynamics in Spin-Glasses and other Glassy Systems. In: Young, A.P. (ed) Spin glasses and random fields. World Scientific Singapore (1998)Google Scholar
  21. 21.
    Pluchino, A., Latora, V., Rapisarda, A.: Glassy phase in the Hamiltonian mean field model. [cond-mat/0306374] (submitted)Google Scholar
  22. 22.
    Boghosian, B.M.: Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics. Phys. Rev. E 53, 4754-4763 (1996); Coraddu, M., Lissia, M., G. Mezzorani, G., Quarati, P.: Deuterium burning in Jupiter interior. Physica A 305, 282-286 (2002)CrossRefGoogle Scholar
  23. 23.
    Beck, C.: Dynamical foundations of nonextensive statistical mechanics. Phys. Rev. Lett. 87, 180201-180204 (2001) and references thereinGoogle Scholar
  24. 24.
    Beck, C., Cohen, E.G.D.: Superstatistics. Physica A 322, 267-275 (2003)CrossRefzbMATHGoogle Scholar
  25. 25.
    Lyra, M.L., Tsallis, C.: Nonextensivity and multifractality in low-dimensional dissipative systems. Phys. Rev. Lett. 80, 53-56 (1998); Tirnakli, U., Tsallis, C., Lyra, M.L.: Circular-like maps: sensitivity to the initial conditions, multifractality and nonextensivity. Eur. Phys. J. B 10, 309-315 (1999); de Moura, F.A.B.F., Tirnakli, U., Lyra, M.L.: Convergence to the critical attractor of dissipative maps: log-periodic oscillations, fractality, and nonextensivity. Phys. Rev. E 62, 6361-6365 (2000)CrossRefGoogle Scholar
  26. 26.
    Latora, V., Baranger, M., Rapisarda, A., Tsallis, C.: The rate of entropy increase at the edge of chaos. Phys. Lett. A 273, 97-103 (2000); Borges, E.P., Tsallis, C., Ananos, G.F.J., de Oliveira, P.M.C.: Nonequilibrium probabilistic dynamics of the logistic map at the edge of chaos. Phys. Rev. Lett. 89, 254103-254106 (2002)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Baldovin, F., Robledo, A.: Universal renormalization-group dynamics at the onset of chaos in logistic maps and nonextensive statistical mechanics. Phys. Rev. E 66, 045104(R)-045107(R) (2002); Baldovin, F., Robledo, A.: Sensitivity to initial conditions at bifurcations in one-dimensional nonlinear maps: rigorous nonextensive solutions. Europhys. Lett. 60, 518-524 (2002)CrossRefGoogle Scholar
  28. 28.
    Baldovin, F., Tsallis, C., Schulze, B.: Nonstandard entropy production in the standard map. Physica A 320, 184-192 (2003)CrossRefzbMATHGoogle Scholar
  29. 29.
    Bediaga, I., Curado, E.M.F., Miranda, J.: A nonextensive thermodynamical equilibrium approach in e + e hadrons. Physica A 286, 156-163 (2000); Wilk, G., Wlodarczyk, Z.: Interpretation of the nonextensivity parameter q in some applications of Tsallis statistics and Lévy distributions. Phys. Rev. Lett. 84, 2770-2773 (2000)CrossRefGoogle Scholar
  30. 30.
    Tsallis, C., Anjos, J.C., Borges, E.P.: Fluxes of cosmic rays: a delicately balanced anomalous thermal equilibrium. Phys. Lett. A 310, 372-379 (2003)CrossRefGoogle Scholar
  31. 31.
    Tsallis, C., Bukman, D.J.: Anomalous diffusion in the presence of external forces: exact time-dependent solutions and their thermostatistical basis. Phys. Rev. E 54, R2197-R2200 (1996)Google Scholar
  32. 32.
    Daniels, K.E., Beck, C., Bodenschatz, E.: Defect turbulence and generalized statistical mechanics. [cond-mat/0302623]Google Scholar
  33. 33.
    Kurchan, J.: Elementary constraints on autocorrelation function scalings. Phys. Rev. E 66, 017101-017104 (2002)CrossRefGoogle Scholar
  34. 34.
    Sherrington, D., Kirkpatrick, S.: Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792-1796 (1975); Sherrington, D., Kirkpatrick, S.: Infinite-ranged models of spin-glasses. Phys. Rev. B 17, 4384-4403 (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Dipartimento di Fisica e AstronomiaUniversitá di Catania, and INFN Sezione di CataniaCataniaItaly

Personalised recommendations