Skip to main content
Log in

Convection induced by the selective absorption of radiation for the Brinkman model

  • Original article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract.

Convection induced by the selective absorption of radiation in a porous medium is studied analytically and numerically using the Brinkman model. Both linear instability analysis and nonlinear stability analysis are employed. The thresholds show excellent agreement so that the region of potential subcritical instabilities is very small, demonstrating that linear theory is accurate enough to predict the onset of convective motion. A surprising result shows that the critical Rayleigh number increases linearly as \(\lambda\) (Darcy number x Brinkman coefficient / dynamic viscosity of the fluid) increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carr, M., de Putter, S.: Penetrative convection in a horizontally isotropic porous layer. Continuum Mech. Thermodyn. 15, 33-43 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chasnov, J.R., Tse, K.L.: Turbulent penetrative convection with an internal heat source. Fluid Dyn. Res. 28, 397-421 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Krishnamurti, R.: Convection induced by selective absorption of radiation: a laboratory model of conditional instability. Dyn. Atmos. Oceans 27, 367-382 (1997)

    Article  Google Scholar 

  4. Hill, A.A.: Convection due to the selective absorption of radiation in a porous medium. Continuum Mech. Thermodyn. 15, 275-285 (2003)

    Article  Google Scholar 

  5. Amahmid, A., Hasnaoui, M., Mamou, M., Vasseur, P.: Double-diffusive parallel flow induced in a horizontal Brinkman porous layer subjected to constant heat and mass fluxes: analytical and numerical studies. Heat Mass Transfer 35, 409-421 (1999)

    Article  Google Scholar 

  6. Mamou, M., Hasnaoui, M., Amahmid, A., Vasseur, P.: Stability analysis of double-diffusive convection in a vertical Brinkman porous enclosure. Int. Commun. Heat Mass Transfer 25, 491-500 (1998)

    Article  Google Scholar 

  7. Amahmid, A., Hasnaoui, M., Vasseur, P.: Etude analytique et numerique de la convection naturelle dans une couche poreuse de Brinkman doublement diffusive. Int. J. Heat Mass Transfer 42, 2991-3005 (1999)

    Article  MATH  Google Scholar 

  8. Poulikakos, D.: Double-diffusive convection in a horizontally sparsely packed porous layer. Int. Commun. Heat Mass Transfer 13, 587-598 (1986)

    Google Scholar 

  9. Straughan, B.: The energy method, stability, and nonlinear convection, 2nd edn., Springer New York (2003)

  10. Nield, D.A., Bejan, A.: Convection in Porous Media, Springer New York (1992)

  11. Joseph, D.D.: Stability of Fluid Motions II, Springer New York (1976)

  12. Lombardo, S., Mulone, G., Straughan, B.: Non-linear stability in the Benard problem for a double-diffusive mixture in a porous medium. Math. Methods Appl. Sci. 24, 1229-1246 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Christopherson, D.G.: Note on the vibration of membranes. Q. J. Math. 11, 63-65 (1940)

    MATH  Google Scholar 

  14. Straughan, B., Walker, D.W.: Two very accurate and efficient methods for computing eigenvalues and eigenfunctions in porous convection problems. J. Comput. Phys. 127, 128-141 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dongarra, J.J., Straughan, B., Walker, D.W.: Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22, 399-434 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Straughan, B.: Global stability for convection induced by absorption of radiation. Dyn. Atmos. Oceans 35, 351-361 (2002)

    Article  Google Scholar 

  17. Tien, H., Chiang, K.: Non-Darcy flow and heat transfer in a porous insulation with infiltration and natural convection. J. Marine Sci. Technol. 7, 125-131 (1999)

    Google Scholar 

  18. Merrikh, A.A., Mohamad, A.A.: Non-Darcy effects in buoyancy driven flows in an enclosure filled with vertically layered porous media. Int. J. Heat Mass Transfer 45, 4305-4313 (2002)

    Article  MATH  Google Scholar 

  19. Martys, N.S.: Improved approximation of the Brinkman equation using a lattice Boltzman method. Phys. Fluids 13, 1807-1810 (2001)

    Article  Google Scholar 

  20. Kim, S., Russel, W.B.: Modelling of porous medium by renormalisation of the Stokes equation. J. Fluid Mech. 154, 269-286 (1985)

    MATH  Google Scholar 

  21. Martys, N.S., Bentz, D.P., Garboczi, E.J.: Computer simulation study of the effective viscosity in Brinkman’s equation. Phys. Fluids 6, 1434-1439 (1994)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Hill.

Additional information

Communicated by: B. Straughan

Received: 6 May 2003, Accepted: 26 May 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, A.A. Convection induced by the selective absorption of radiation for the Brinkman model. Continuum Mech. Thermodyn. 16, 43–52 (2004). https://doi.org/10.1007/s00161-003-0140-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-003-0140-6

Keywords:

Navigation