Abstract
Low-energy cosmic rays (up to the GeV energy domain) play a crucial role in the physics and chemistry of the densest phase of the interstellar medium. Unlike interstellar ionising radiation, they can penetrate large column densities of gas, and reach molecular cloud cores. By maintaining there a small but not negligible gas ionisation fraction, they dictate the coupling between the plasma and the magnetic field, which in turn affects the dynamical evolution of clouds and impacts on the process of star and planet formation. The cosmic-ray ionisation of molecular hydrogen in interstellar clouds also drives the rich interstellar chemistry revealed by observations of spectral lines in a broad region of the electromagnetic spectrum, spanning from the submillimetre to the visual band. Some recent developments in various branches of astrophysics provide us with an unprecedented view on low-energy cosmic rays. Accurate measurements and constraints on the intensity of such particles are now available both for the very local interstellar medium and for distant interstellar clouds. The interpretation of these recent data is currently debated, and the emerging picture calls for a reassessment of the scenario invoked to describe the origin and/or the transport of low-energy cosmic rays in the Galaxy.
Similar content being viewed by others
Notes
Besides LiBeB, CR spallation also explains the existence of other rare isotopes, such as, e.g., tritium, \(^{14}\)C, \(^{26}\)Al, etc., called cosmogenic nuclides (Gosse and Phillips 2001).
Anomalous CRs are neutral atoms in the local ISM that, due to the motion of the Sun, enter the heliosphere, become partially (mainly singly) ionised due to charge exchange, solar radiation, or electron impact, and are eventually accelerated in the solar wind up to energies of \(\lesssim 100\) MeV/nucleon (Reames 1999; Potgieter 2013).
The rigidity of a fully ionised nucleus of momentum p is \(R = p c/Z e\), where e is the elementary charge. If pc is expressed in eV and the particle charge in natural units (\(e = 1\)) the rigidity has units of Volts. Particles of equal rigidity have the same gyration radius around a magnetic field of strength B, \(r_g = R/B\), and therefore follow the same trajectory.
Nuclei characterised by the same energy per nucleon move at the same speed.
At smaller particle energies, the effect of Solar modulation becomes significant.
At the International Cosmic-Ray Conference that took place (virtually) in Berlin in July 2021, the AMS-02 collaboration presented preliminary results on the measurements of the isotopic ratio \(^{10}\mathrm{Be}/^9\mathrm{Be}\) up to energies of \(\sim\) 10 GeV/nucleon.
Which provides a better representation of data with respect to the singly broken power law spectra often adopted in the literature. However, this is just a convenient descriptive expression, being neither a physically motivated choice, nor a formal fit to data.
The main problem is that even the lowest (rotational) excited energy level is too far from the ground state to be significantly populated, given the cold environments where H\(_2\) is generally found (see Stahler and Palla 2004, for a detailed discussion).
KIDA: Kinetic Database for Astrochemistry: https://kida.astrochem-tools.org/.
For a detailed description of H\(_3^+\) spectroscopy notation, see Lindsay and McCall (2001).
Assumed typical values are: \(n_{{\mathrm{H}}} = 200\) cm\(^{-3}\), \(x_3 = 1.5 \times 10^{-4}\), \(f_{{\mathrm{H}}_2} = 0.67\), \(T = 70\) K.
PAHs are molecules made entirely of carbon and hydrogen arranged in cyclic (ring shaped) structures called aromatic rings (Tielens 2008).
Assumed typical values: \(T = 100\) K, \(x_e = 1.5 \times 10^{-4}\), \(n_{\mathrm{H}} = 35\) cm\(^{-3}\).
This claim is true unless an unknown and steep spectral component pops up in the sub-MeV domain. We will briefly discuss this possibility in Sect. 7.
See, e.g., Hollweg (1974) for a formal approach to MHD waves.
For a detailed derivation of the spatial diffusion coefficient from the spectrum of magnetic fluctuations based on a state-of-the-art theory of magnetic turbulence, see, for example, Fornieri et al. (2021) and the list of references therein.
Assumed values: \(n_n = 300\) cm\(^{-3}\), \(T = 50\) K, \(x_e \sim 10^{-4}\), H\(_2\) and C\(^+\) dominant neutral and ion species, respectively.
We neglect the small correction due to the Compton–Getting effect.
References
Acero F, Ackermann M, Ajello M et al (2016) Development of the model of galactic interstellar emission for standard point-source analysis of Fermi Large Area Telescope data. Astrophys J Suppl 223(2):26. https://doi.org/10.3847/0067-0049/223/2/26. arXiv:1602.07246 [astro-ph.HE]
Ackermann M, Ajello M, Atwood WB et al (2012) Fermi-LAT observations of the diffuse \(\gamma\)-ray emission: implications for cosmic rays and the interstellar medium. Astrophys J 750(1):3. https://doi.org/10.1088/0004-637X/750/1/3. arXiv:1202.4039 [astro-ph.HE]
Adriani O, Barbarino GC, Bazilevskaya GA et al (2011) PAMELA measurements of cosmic-ray proton and helium spectra. Science 332(6025):69. https://doi.org/10.1126/science.1199172. arXiv:1103.4055 [astro-ph.HE]
Adriani O, Barbarino GC, Bazilevskaya GA et al (2013) Time dependence of the proton flux measured by PAMELA during the 2006 July–2009 December solar minimum. Astrophys J 765(2):91. https://doi.org/10.1088/0004-637X/765/2/91. arXiv:1301.4108 [astro-ph.HE]
Adriani O, Barbarino GC, Bazilevskaya GA et al (2014) The PAMELA mission: heralding a new era in precision cosmic ray physics. Phys Rep 544(4):323–370. https://doi.org/10.1016/j.physrep.2014.06.003
Aguilar M, Aisa D, Alpat B et al (2015) Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. Phys Rev Lett 114(17):171103. https://doi.org/10.1103/PhysRevLett.114.171103
Aguilar M, Ali Cavasonza L, Ambrosi G et al (2016) Precision measurement of the boron to carbon flux ratio in cosmic rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station. Phys Rev Lett 117(23):231102. https://doi.org/10.1103/PhysRevLett.117.231102
Aguilar M, Ali Cavasonza L, Alpat B et al (2017) Observation of the identical rigidity dependence of He, C, and O cosmic rays at high rigidities by the Alpha Magnetic Spectrometer on the International Space Station. Phys Rev Lett 119(25):251101. https://doi.org/10.1103/PhysRevLett.119.251101
Aguilar M, Ali Cavasonza L, Alpat B et al (2019) Towards understanding the origin of cosmic-ray electrons. Phys Rev Lett 122(10):101101. https://doi.org/10.1103/PhysRevLett.122.101101
Aguilar M, Ali Cavasonza L, Ambrosi G et al (2021) The Alpha Magnetic Spectrometer (AMS) on the international space station: part II—results from the first seven years. Phys Rep 894:1–116. https://doi.org/10.1016/j.physrep.2020.09.003
Aharonian FA (1991) Vary high and ultra high energy gamma-rays from giant molecular clouds. Astrophys Space Sci 180(2):305–320. https://doi.org/10.1007/BF00648185
Aharonian FA (2004) Very high energy cosmic gamma radiation?: a crucial window on the extreme Universe. World Scientific, Singapore. https://doi.org/10.1142/4657
Aharonian F, Yang R, de Oña Wilhelmi E (2019) Massive stars as major factories of Galactic cosmic rays. Nat Astron 3:561–567. https://doi.org/10.1038/s41550-019-0724-0. arXiv:1804.02331 [astro-ph.HE]
Aharonian F, Peron G, Yang R, Casanova S, Zanin R (2020) Probing the sea of galactic cosmic rays with Fermi-LAT. Phys Rev D 101(8):083018. https://doi.org/10.1103/PhysRevD.101.083018
Amato E, Casanova S (2021) On particle acceleration and transport in plasmas in the Galaxy: theory and observations. J Plasma Phys 87(1):845870101. https://doi.org/10.1017/S0022377821000064. arXiv:2104.12428 [astro-ph.HE]
AMS Collaboration, Aguilar M, Alcaraz J et al (2002) The Alpha Magnetic Spectrometer (AMS) on the International Space Station: part I—results from the test flight on the space shuttle. Phys Rep 366(6):331–405. https://doi.org/10.1016/S0370-1573(02)00013-3
Armitage PJ (2011) Dynamics of protoplanetary disks. Annu Rev Astron Astrophys 49(1):195–236. https://doi.org/10.1146/annurev-astro-081710-102521. arXiv:1011.1496 [astro-ph.SR]
Axford WI, Leer E, Skadron G (1977) The acceleration of cosmic rays by shock waves. In: 15th International Cosmic Ray Conference (vol 11). Plovdiv, p 132
Baade W, Zwicky F (1934) Cosmic rays from super-novae. Proc Natl Acad Sci 20(5):259–263. https://doi.org/10.1073/pnas.20.5.259
Bacalla XL, Linnartz H, Cox NLJ et al (2019) The EDIBLES survey. IV. Cosmic ray ionization rates in diffuse clouds from near-ultraviolet observations of interstellar OH\(^{+}\). Astron Astrophys 622:A31. https://doi.org/10.1051/0004-6361/201833039. arXiv:1811.08662 [astro-ph.GA]
Barlow MJ, Swinyard BM, Owen PJ et al (2013) Detection of a noble gas molecular ion, \(^{36}\)ArH\(^{+}\), in the Crab Nebula. Science 342(6164):1343–1345. https://doi.org/10.1126/science.1243582. arXiv:1312.4843 [astro-ph.GA]
Becker JK, Black JH, Safarzadeh M, Schuppan F (2011) Tracing the sources of cosmic rays with molecular ions. Astrophys J Lett 739(2):L43. https://doi.org/10.1088/2041-8205/739/2/L43. arXiv:1106.4740 [astro-ph.GA]
Bell AR (1978) The acceleration of cosmic rays in shock fronts—I. Mon Not R Astron Soc 182:147–156. https://doi.org/10.1093/mnras/182.2.147
Berezinskii VS, Bulanov SV, Dogiel VA, Ptuskin VS, Ginzburg LV (eds) (1990) Astrophysics of cosmic rays. North-Holland, Amsterdam
Bergin EA, Tafalla M (2007) Cold dark clouds: the initial conditions for star formation. Annu Rev Astron Astrophys 45(1):339–396. https://doi.org/10.1146/annurev.astro.45.071206.100404. arXiv:0705.3765 [astro-ph]
Beuermann K, Kanbach G, Berkhuijsen EM (1985) Radio structure of the Galaxy: thick disk and thin disk at 408 MHz. Astron Astrophys 153:17–34
Bindi V, Corti C, Consolandi C, Hoffman J, Whitman K (2017) Overview of galactic cosmic ray solar modulation in the AMS-02 era. Adv Space Res 60(4):865–878. https://doi.org/10.1016/j.asr.2017.05.025
Black JH, Dalgarno A (1973) The cosmic abundance of deuterium. Astrophys J Lett 184:L101. https://doi.org/10.1086/181299
Black JH, Dalgarno A (1977) Models of interstellar clouds. I. The Zeta Ophiuchi cloud. Astrophys J Suppl 34:405–423. https://doi.org/10.1086/190455
Black JH, Fazio GG (1973) Production of gamma radiation in dense interstellar clouds by cosmic-ray interactions. Astrophys J Lett 185:L7. https://doi.org/10.1086/181310
Blandford R, Eichler D (1987) Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys Rep 154(1):1–75. https://doi.org/10.1016/0370-1573(87)90134-7
Blandford RD, Ostriker JP (1978) Particle acceleration by astrophysical shocks. Astrophys J Lett 221:L29–L32. https://doi.org/10.1086/182658
Blasi P (2013) The origin of galactic cosmic rays. Astron Astrophys Rev 21:70. https://doi.org/10.1007/s00159-013-0070-7. arXiv:1311.7346 [astro-ph.HE]
Blumenthal GR, Gould RJ (1970) Bremsstrahlung, synchrotron radiation, and Compton scattering of high-energy electrons traversing dilute gases. Rev Mod Phys 42(2):237–271. https://doi.org/10.1103/RevModPhys.42.237
Boezio M, Munini R, Picozza P (2020) Cosmic ray detection in space. Prog Part Nucl Phys 112:103765. https://doi.org/10.1016/j.ppnp.2020.103765
Bohlin RC, Savage BD, Drake JF (1978) A survey of interstellar Hi from L-α absorption measurements. II. Astrophys J 224:132–142. https://doi.org/10.1086/156357
Bolatto AD, Wolfire M, Leroy AK (2013) The CO-to-H\(_{2}\) conversion factor. Annu Rev Astron Astrophys 51(1):207–268. https://doi.org/10.1146/annurev-astro-082812-140944. arXiv:1301.3498 [astro-ph.GA]
Boschini MJ, Della Torre S, Gervasi M, La Vacca G, Rancoita PG (2019) The HELMOD model in the works for inner and outer heliosphere: from AMS to Voyager probes observations. Adv Space Res 64(12):2459–2476. https://doi.org/10.1016/j.asr.2019.04.007
Bovino S, Ferrada-Chamorro S, Lupi A, Schleicher DRG, Caselli P (2020) A new proxy to estimate the cosmic ray ionization rate in dense cores. Mon Not R Astron Soc 495(1):L7–L11. https://doi.org/10.1093/mnrasl/slaa048. arXiv:2003.05416 [astro-ph.GA]
Breitschwerdt D, Feige J, Schulreich MM et al (2016) The locations of recent supernovae near the Sun from modelling \(^{60}\)Fe transport. Nature 532(7597):73–76. https://doi.org/10.1038/nature17424
Brittain SD, Simon T, Kulesa C, Rettig TW (2004) Interstellar H\(_{3}^{+}\) line absorption toward LkH\(\alpha\) 101. Astrophys J 606(2):911–916. https://doi.org/10.1086/383024
Brown RL, Marscher AP (1977) Energetic secondary electrons in dense interstellar clouds. Astrophys J 212:659–663. https://doi.org/10.1086/155088
Burbidge EM, Burbidge GR, Fowler WA, Hoyle F (1957) Synthesis of the elements in stars. Rev Mod Phys 29(4):547–650. https://doi.org/10.1103/RevModPhys.29.547
Bykov AM (2014) Nonthermal particles and photons in starburst regions and superbubbles. Astron Astrophys Rev 22:77. https://doi.org/10.1007/s00159-014-0077-8. arXiv:1511.04608 [astro-ph.HE]
Caballero-Lopez RA, Moraal H (2004) Limitations of the force field equation to describe cosmic ray modulation. J Geophys Res 109(A1):A01101. https://doi.org/10.1029/2003JA010098
Cameron AGW (1957) Nuclear reactions in stars and nucleogenesis. Publ Astron Soc Pac 69(408):201. https://doi.org/10.1086/127051
Cardelli JA, Meyer DM, Jura M, Savage BD (1996) The abundance of interstellar carbon. Astrophys J 467:334. https://doi.org/10.1086/177608
Casandjian JM (2015) Local H i emissivity measured with Fermi-LAT and implications for cosmic-ray spectra. Astrophys J 806(2):240. https://doi.org/10.1088/0004-637X/806/2/240. arXiv:1506.00047 [astro-ph.HE]
Casanova S, Aharonian FA, Fukui Y et al (2010) Molecular clouds as cosmic-ray barometers. Publ Astron Soc Jpn 62:769. https://doi.org/10.1093/pasj/62.3.769. arXiv:0904.2887 [astro-ph.HE]
Caselli P (2002) Deuterated molecules as a probe of ionization fraction in dense interstellar clouds. Planet Space Sci 50(12–13):1133–1144. https://doi.org/10.1016/S0032-0633(02)00074-0. arXiv:astro-ph/0204127
Caselli P, Ceccarelli C (2012) Our astrochemical heritage. Astron Astrophys Rev 20:56. https://doi.org/10.1007/s00159-012-0056-x. arXiv:1210.6368 [astro-ph.GA]
Caselli P, Walmsley CM, Terzieva R, Herbst E (1998) The ionization fraction in dense cloud cores. Astrophys J 499(1):234–249. https://doi.org/10.1086/305624
Casse F, Lemoine M, Pelletier G (2001) Transport of cosmic rays in chaotic magnetic fields. Phys Rev D 65(2):023002. https://doi.org/10.1103/PhysRevD.65.023002. arXiv:astro-ph/0109223
Ceccarelli C, Hily-Blant P, Montmerle T et al (2011) Supernova-enhanced cosmic-ray ionization and induced chemistry in a molecular cloud of W51C. Astrophys J Lett 740(1):L4. https://doi.org/10.1088/2041-8205/740/1/L4. arXiv:1108.3600 [astro-ph.GA]
Ceccarelli C, Caselli P, Bockelée-Morvan D et al (2014) Deuterium fractionation: the Ariadne’s thread from the pre-collapse phase to meteorites and comets today. In: Beuther H, Klessen RS, Dullemond CP, Henning T (eds) Protostars and planets VI. University of Arizona Press, p 859. https://doi.org/10.2458/azu_uapress_9780816531240-ch037. arXiv:1403.7143 [astro-ph.EP]
Cesarsky CJ (1975) Interstellar propagation of low energy cosmic rays. In: Proceedings from the 14th international cosmic ray conference, vol 2. MPE, Munich, p 634
Cesarsky CJ, Montmerle T (1983) Gamma-rays from active regions in the galaxy—the possible contribution of stellar winds. Space Sci Rev 36(2):173–193. https://doi.org/10.1007/BF00167503
Cesarsky CJ, Volk HJ (1978) Cosmic ray penetration into molecular clouds. Astron Astrophys 70:367
Chabot M (2016) Cosmic-ray slowing down in molecular clouds: effects of heavy nuclei. Astron Astrophys 585:A15. https://doi.org/10.1051/0004-6361/201425441
Chandran BDG (2000) Confinement and isotropization of galactic cosmic rays by molecular-cloud magnetic mirrors when turbulent scattering is weak. Astrophys J 529(1):513–535. https://doi.org/10.1086/308232
Cholis I, Hooper D, Linden T (2016) A predictive analytic model for the solar modulation of cosmic rays. Phys Rev D 93(4):043016. https://doi.org/10.1103/PhysRevD.93.043016. arXiv:1511.01507 [astro-ph.SR]
Chuvilgin LG, Ptuskin VS (1993) Anomalous diffusion of cosmic rays across the magnetic field. Astron Astrophys 279(1):278–297
Clark GW, Garmire GP, Kraushaar WL (1968) Observation of high-energy cosmic gamma rays. Astrophys J Lett 153:L203. https://doi.org/10.1086/180252
Coc A, Vangioni E (2017) Primordial nucleosynthesis. Int J Mod Phys E 26(8):1741002. https://doi.org/10.1142/S0218301317410026. arXiv:1707.01004 [astro-ph.CO]
Compton AH, Getting IA (1935) An apparent effect of galactic rotation on the intensity of cosmic rays. Phys Rev 47(11):817–821. https://doi.org/10.1103/PhysRev.47.817
Corti C, Bindi V, Consolandi C, Whitman K (2016) Solar modulation of the local interstellar spectrum with Voyager 1, AMS-02, PAMELA, and BESS. Astrophys J 829(1):8. https://doi.org/10.3847/0004-637X/829/1/8
Corti C, Potgieter MS, Bindi V et al (2019) Numerical modeling of galactic cosmic-ray proton and helium observed by AMS-02 during the solar maximum of solar cycle 24. Astrophys J 871(2):253. https://doi.org/10.3847/1538-4357/aafac4
Cox DP (2005) The three-phase interstellar medium revisited. Annu Rev Astron Astrophys 43(1):337–385. https://doi.org/10.1146/annurev.astro.43.072103.150615
Cravens TE, Dalgarno A (1978) Ionization, dissociation, and heating efficiencies of cosmic rays in a gas of molecular hydrogen. Astrophys J 219:750–752. https://doi.org/10.1086/155833
Crocker RM, Jones D, Protheroe RJ et al (2007) The cosmic ray distribution in Sagittarius B. Astrophys J 666(2):934–948. https://doi.org/10.1086/518243. arXiv:astro-ph/0702045
Crutcher RM (2012) Magnetic fields in molecular clouds. Annu Rev Astron Astrophys 50:29–63. https://doi.org/10.1146/annurev-astro-081811-125514
Cummings AC, Stone EC, Heikkila BC et al (2016) Galactic cosmic rays in the local interstellar medium: Voyager 1 observations and model results. Astrophys J 831(1):18. https://doi.org/10.3847/0004-637X/831/1/18
Dalgarno A (2006) Interstellar chemistry special feature: the galactic cosmic ray ionization rate. Proc Natl Acad Sci 103(33):12269–12273. https://doi.org/10.1073/pnas.0602117103
Dartnell LR (2011) Ionizing radiation and life. Astrobiology 11(6):551–582. https://doi.org/10.1089/ast.2010.0528
de Angelis A, Tatischeff V, Grenier IA et al (2018) Science with e-ASTROGAM. A space mission for MeV–GeV gamma-ray astrophysics. J High Energy Astrophys 19:1–106. https://doi.org/10.1016/j.jheap.2018.07.001. arXiv:1711.01265 [astro-ph.HE]
Di Bernardo G, Evoli C, Gaggero D, Grasso D, Maccione L (2013) Cosmic ray electrons, positrons and the synchrotron emission of the Galaxy: consistent analysis and implications. J Cosmol Astropart Phys 2013(3):036. https://doi.org/10.1088/1475-7516/2013/03/036. arXiv:1210.4546 [astro-ph.HE]
Di Bernardo G, Grasso D, Evoli C, Gaggero D (2015) Diffuse synchrotron emission from galactic cosmic ray electrons. ASTRA Proc 2:21–26. https://doi.org/10.5194/ap-2-21-2015. arXiv:1504.05735 [astro-ph.HE]
Dickinson C, Beck R, Crocker R et al (2015) SKA studies of in situ synchrotron radiation from molecular clouds. In: Advancing astrophysics with the Square Kilometre Array (AASKA14). Proc Sci, vol 215. SISSA, p 102. https://doi.org/10.22323/1.215.0102
Dogiel VA, Chernyshov DO, Ivlev AV, Kiselev AM, Kopyev AV (2021) Self-modulation of cosmic rays in molecular clouds: imprints in the radio observations. Astrophys J 921(1):43. https://doi.org/10.3847/1538-4357/ac1e8f. arXiv:2108.07559 [astro-ph.GA]
Dolginov AZ, Toptygin IN (1968) Cosmic rays in the interplanetary magnetic fields. Icarus 8(1–3):54–60. https://doi.org/10.1016/0019-1035(68)90061-4
Donato F, Maurin D, Taillet R (2002) beta-radioactive cosmic rays in a diffusion model: test for a local bubble? Astron Astrophys 381:539–559. https://doi.org/10.1051/0004-6361:20011447. arXiv:astro-ph/0108079
Drury LO (2011) Escaping the accelerator: how, when and in what numbers do cosmic rays get out of supernova remnants? Mon Not R Astron Soc 415(2):1807–1814. https://doi.org/10.1111/j.1365-2966.2011.18824.x. arXiv:1009.4799 [astro-ph.GA]
Drury LOC (2012) Origin of cosmic rays. Astropart Phys 39:52–60. https://doi.org/10.1016/j.astropartphys.2012.02.006. arXiv:1203.3681 [astro-ph.HE]
Drury LOC, Strong AW (2017) Power requirements for cosmic ray propagation models involving diffusive reacceleration; estimates and implications for the damping of interstellar turbulence. Astron Astrophys 597:A117. https://doi.org/10.1051/0004-6361/201629526. arXiv:1608.04227 [astro-ph.HE]
Everett JE, Zweibel EG (2011) The interaction of cosmic rays with diffuse clouds. Astrophys J 739(2):60. https://doi.org/10.1088/0004-637X/739/2/60. arXiv:1107.1243 [astro-ph.GA]
Evoli C, Aloisio R, Blasi P (2019) Galactic cosmic rays after the AMS-02 observations. Phys Rev D 99(10):103023. https://doi.org/10.1103/PhysRevD.99.103023. arXiv:1904.10220 [astro-ph.HE]
Fano U (1954) Ionizing collisions of very fast particles and the dipole strength of optical transitions. Phys Rev 95(5):1198–1200. https://doi.org/10.1103/PhysRev.95.1198
Farmer AJ, Goldreich P (2004) Wave damping by magnetohydrodynamic turbulence and its effect on cosmic-ray propagation in the interstellar medium. Astrophys J 604(2):671–674. https://doi.org/10.1086/382040. arXiv:astro-ph/0311400
Favre C, Ceccarelli C, López-Sepulcre A et al (2018) SOLIS IV. Hydrocarbons in the OMC-2 FIR4 region, a probe of energetic particle irradiation of the region. Astrophys J 859(2):136. https://doi.org/10.3847/1538-4357/aabfd4. arXiv:1804.07825 [astro-ph.GA]
Federman SR, Weber J, Lambert DL (1996) Cosmic ray-induced chemistry toward Perseus OB2. Astrophys J 463:181. https://doi.org/10.1086/177233
Fermi E (1949) On the origin of the cosmic radiation. Phys Rev 75(8):1169–1174. https://doi.org/10.1103/PhysRev.75.1169
Ferrière KM (2001) The interstellar environment of our galaxy. Rev Mod Phys 73(4):1031–1066. https://doi.org/10.1103/RevModPhys.73.1031. arXiv:astro-ph/0106359
Field GB, Goldsmith DW, Habing HJ (1969) Cosmic-ray heating of the interstellar gas. Astrophys J Lett 155:L149. https://doi.org/10.1086/180324
Fisk LA, Forman MA, Axford WI (1973) Solar modulation of galactic cosmic rays: 3. Implications of the Compton-Getting coefficient. J Geophys Res 18(7):995. https://doi.org/10.1029/JA078i007p00995
Forman MA (1970) The Compton-Getting effect for cosmic-ray particles and photons and the Lorentz-invariance of distribution functions. Planet Space Sci 18(1):25–31. https://doi.org/10.1016/0032-0633(70)90064-4
Fornieri O, Gaggero D, Cerri SS, De La Torre Luque P, Gabici S (2021) The theory of cosmic ray scattering on pre-existing MHD modes meets data. Mon Not R Astron Soc 502(4):5821–5838. https://doi.org/10.1093/mnras/stab355. arXiv:2011.09197 [astro-ph.HE]
Fuente A, Cernicharo J, Roueff E et al (2016) Ionization fraction and the enhanced sulfur chemistry in Barnard 1. Astron Astrophys 593:A94. https://doi.org/10.1051/0004-6361/201628285. arXiv:1605.04724 [astro-ph.GA]
Gabici S, Aharonian FA, Blasi P (2007) Gamma rays from molecular clouds. Astrophys Space Sci 309(1–4):365–371. https://doi.org/10.1007/s10509-007-9427-6. arXiv:astro-ph/0610032
Gabici S, Aharonian FA, Casanova S (2009) Broad-band non-thermal emission from molecular clouds illuminated by cosmic rays from nearby supernova remnants. Mon Not R Astron Soc 396(3):1629–1639. https://doi.org/10.1111/j.1365-2966.2009.14832.x. arXiv:0901.4549 [astro-ph.HE]
Gabici S, Evoli C, Gaggero D et al (2019) The origin of Galactic cosmic rays: challenges to the standard paradigm. Int J Mod Phys D 28(15):1930022–339. https://doi.org/10.1142/S0218271819300222. arXiv:1903.11584 [astro-ph.HE]
Gaches BAL, Offner SSR, Bisbas TG (2019) The astrochemical impact of cosmic rays in protoclusters. I. Molecular cloud chemistry. Astrophys J 878(2):105. https://doi.org/10.3847/1538-4357/ab20c7. arXiv:1905.02232 [astro-ph.GA]
Gaches BAL, Walch S, Lazarian A (2021) Cosmic-ray acceleration from turbulence in molecular clouds. Astrophys J Lett 917(2):L39. https://doi.org/10.3847/2041-8213/ac1b2f. arXiv:2108.03250 [astro-ph.HE]
Gaches BAL, Bisbas TG, Bialy S (2022) The impact of cosmic-ray attenuation on the carbon cycle emission in molecular clouds. Astron Astrophys 658:A151. https://doi.org/10.1051/0004-6361/202142411. arXiv:2110.06958 [astro-ph.GA]
Gaisser TK, Engel R, Resconi E (2016) Cosmic rays and particle physics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139192194
Geballe TR, Oka T (1996) Detection of H\(^{+}_{3}\) in interstellar space. Nature 384(6607):334–335. https://doi.org/10.1038/384334a0
Génolini Y, Maurin D, Moskalenko IV, Unger M (2018) Current status and desired precision of the isotopic production cross sections relevant to astrophysics of cosmic rays: Li, Be, B, C, and N. Phys Rev C 98(3):034611. https://doi.org/10.1103/PhysRevC.98.034611. arXiv:1803.04686 [astro-ph.HE]
Génolini Y, Boudaud M, Batista PI et al (2019) Cosmic-ray transport from AMS-02 boron to carbon ratio data: benchmark models and interpretation. Phys Rev D 99(12):123028. https://doi.org/10.1103/PhysRevD.99.123028. arXiv:1904.08917 [astro-ph.HE]
Gerin M, de Luca M, Black J et al (2010) Interstellar OH\(^{+}\), H\(_{2}\)O\(^{+}\) and H\(_{3}\)O\(^{+}\) along the sight-line to G10.6-0.4. Astron Astrophys 518:L110. https://doi.org/10.1051/0004-6361/201014576. arXiv:1005.5653 [astro-ph.GA]
Ghelfi A, Barao F, Derome L, Maurin D (2016) Non-parametric determination of H and He interstellar fluxes from cosmic-ray data. Astron Astrophys 591:A94. https://doi.org/10.1051/0004-6361/201527852. arXiv:1511.08650 [astro-ph.HE]
Gibb EL, Brittain SD, Rettig TW et al (2010) CO and H\(^{+}_{3}\) toward MWC 1080, MWC 349, and LkH\({\alpha }\) 101. Astrophys J 715(2):757–766. https://doi.org/10.1088/0004-637X/715/2/757
Gieseler J, Heber B, Herbst K (2017) An empirical modification of the force field approach to describe the modulation of galactic cosmic rays close to Earth in a broad range of rigidities. J Geophys Res 122(11):10964–10979 arXiv:1710.10834 [physics.space-ph]
Glassgold AE, Langer WD (1974) Model calculations for diffuse molecular clouds. Astrophys J 193:73–91. https://doi.org/10.1086/153130
Glassgold AE, Galli D, Padovani M (2012) Cosmic-ray and X-ray heating of interstellar clouds and protoplanetary disks. Astrophys J 756(2):157. https://doi.org/10.1088/0004-637X/756/2/157. arXiv:1208.0523 [astro-ph.GA]
Gleeson LJ, Axford WI (1967) Cosmic rays in the interplanetary medium. Astrophys J Lett 149:L115. https://doi.org/10.1086/180070
Gleeson LJ, Axford WI (1968) The Compton-Getting effect. Astrophys Space Sci 2(4):431–437. https://doi.org/10.1007/BF02175919
Gloeckler G, Fisk LA (2015) More evidence that Voyager 1 is still in the heliosphere. Astrophys J Lett 806(2):L27. https://doi.org/10.1088/2041-8205/806/2/L27
Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quat Sci Rev 20(14):1475–1560. https://doi.org/10.1016/S0277-3791(00)00171-2
Guelin M, Langer WD, Snell RL, Wootten HA (1977) Observations of DCO\(^{+}\): the electron abundance in dark clouds. Astrophys J Lett 217:L165–L168. https://doi.org/10.1086/182562
Hanasz M, Strong AW, Girichidis P (2021) Simulations of cosmic ray propagation. Living Rev Comput Astrophys 7:2. https://doi.org/10.1007/s41115-021-00011-1. arXiv:2106.08426 [astro-ph.HE]
Hayakawa S (1952) Propagation of the cosmic radiation through intersteller space. Prog Theor Phys 8(5):571–572. https://doi.org/10.1143/ptp/8.5.571
Hayakawa S, Ito K, Terashima Y (1958) Origin of cosmic rays. Prog Theor Phys Suppl 6:1–92. https://doi.org/10.1143/PTPS.6.1
Hayakawa S, Nishimura S, Takayanagi T (1961) Radiation from the interstellar hydrogen atoms. Publ Astron Soc Jpn 13:184
Heinbach U, Simon M (1995) Propagation of galactic cosmic rays under diffusive reacceleration. Astrophys J 441:209. https://doi.org/10.1086/175350
Hennebelle P, Falgarone E (2012) Turbulent molecular clouds. Astron Astrophys Rev 20:55. https://doi.org/10.1007/s00159-012-0055-y. arXiv:1211.0637 [astro-ph.GA]
Herbst E, Klemperer W (1973) The formation and depletion of molecules in dense interstellar clouds. Astrophys J 185:505–534. https://doi.org/10.1086/152436
Heyer M, Dame TM (2015) Molecular clouds in the Milky Way. Annu Rev Astron Astrophys 53:583–629. https://doi.org/10.1146/annurev-astro-082214-122324
Heywood I, Rammala I, Camilo F et al (2022) The 1.28 GHz MeerKAT Galactic Center mosaic. Astrophys J 925(2):165. https://doi.org/10.3847/1538-4357/ac449a. arXiv:2201.10541 [astro-ph.GA]
Hezareh T, Houde M, McCoey C, Vastel C, Peng R (2008) Simultaneous determination of the cosmic ray ionization rate and fractional ionization in DR 21(OH). Astrophys J 684(2):1221–1227. https://doi.org/10.1086/590365. arXiv:0805.4018 [astro-ph]
Hollenbach D, Kaufman MJ, Neufeld D, Wolfire M, Goicoechea JR (2012) The chemistry of interstellar OH\(^{+}\), H\(_{2}\)O\(^{+}\), and H\(_{3}\)O\(^{+}\): inferring the cosmic-ray ionization rates from observations of molecular ions. Astrophys J 754(2):105. https://doi.org/10.1088/0004-637X/754/2/105. arXiv:1205.6446 [astro-ph.GA]
Hollweg JV (1974) Hydromagnetic waves in interplanetary space. Pub Astron Soc Aust 86(513):561. https://doi.org/10.1086/129646
Hsieh KC, Mason GM, Simpson JA (1971) Cosmic-ray \(^{2}\)H from satellite measurements, 1965–1969. Astrophys J 166:221. https://doi.org/10.1086/150951
Indriolo N, McCall BJ (2012) Investigating the cosmic-ray ionization rate in the galactic diffuse interstellar medium through observations of H\(^{+}\)\(_{3}\). Astrophys J 745(1):91. https://doi.org/10.1088/0004-637X/745/1/91. arXiv:1111.6936 [astro-ph.GA]
Indriolo N, Geballe TR, Oka T, McCall BJ (2007) H\(^{+}_{3}\) in diffuse interstellar clouds: a tracer for the cosmic-ray ionization rate. Astrophys J 671(2):1736–1747. https://doi.org/10.1086/523036. arXiv:0709.1114 [astro-ph]
Indriolo N, Blake GA, Goto M et al (2010) Investigating the cosmic-ray ionization rate near the supernova remnant IC 443 through H\(^{+}\)\(_{3}\) observations. Astrophys J 724(2):1357–1365. https://doi.org/10.1088/0004-637X/724/2/1357. arXiv:1010.3252 [astro-ph.HE]
Indriolo N, Neufeld DA, Gerin M et al (2012) Chemical analysis of a diffuse cloud along a line of sight toward W51: molecular fraction and cosmic-ray ionization rate. Astrophys J 758(2):83. https://doi.org/10.1088/0004-637X/758/2/83. arXiv:1208.3202 [astro-ph.GA]
Indriolo N, Neufeld DA, Gerin M et al (2015) Herschel survey of galactic OH\(^{+}\), H\(_{2}\)O\(^{+}\), and H\(_{3}\)O\(^{+}\): probing the molecular hydrogen fraction and cosmic-ray ionization rate. Astrophys J 800(1):40. https://doi.org/10.1088/0004-637X/800/1/40. arXiv:1412.1106 [astro-ph.GA]
Issa MR, Wolfendale AW (1981) \(\gamma\) Rays from the cosmic ray irradiation of local molecular clouds. Nature 292(5822):430–433. https://doi.org/10.1038/292430a0
Ivlev AV, Padovani M, Galli D, Caselli P (2015) Interstellar dust charging in dense molecular clouds: cosmic ray effects. Astrophys J 812(2):135. https://doi.org/10.1088/0004-637X/812/2/135. arXiv:1507.00692 [astro-ph.GA]
Ivlev AV, Dogiel VA, Chernyshov DO et al (2018) Penetration of cosmic rays into dense molecular clouds: role of diffuse envelopes. Astrophys J 855(1):23. https://doi.org/10.3847/1538-4357/aaadb9. arXiv:1802.02612 [astro-ph.HE]
Ivlev AV, Silsbee K, Padovani M, Galli D (2021) Rigorous theory for secondary cosmic-ray ionization. Astrophys J 909(2):107. https://doi.org/10.3847/1538-4357/abdc27. arXiv:2101.05803 [astro-ph.GA]
Jokipii JR, Parker EN (1967) Energy changes of cosmic rays in the solar system. Planet Space Sci 15(9):1375–1386. https://doi.org/10.1016/0032-0633(67)90111-0
Jokipii JR, Parker EN (1970) On the convection, diffusion, and adiabatic deceleration of cosmic rays in the solar wind. Astrophys J 160:735. https://doi.org/10.1086/150465
Jones DI (2014) Prospects for detection of synchrotron emission from secondary electrons and positrons in starless cores: application to G0.216+0.016. Astrophys J Lett 792(1):L14 arXiv:1408.1822 [astro-ph.HE]
Jones FC, Lukasiak A, Ptuskin V, Webber W (2001) The modified weighted slab technique: models and results. Astrophysics J 547(1):264–271. https://doi.org/10.1086/318358. arXiv:astro-ph/0007293
Jones DI, Protheroe RJ, Crocker RM (2008) Search for synchrotron emission from secondary leptons in dense cold starless cores. Publ Astron Soc Aust 25(4):161–166. https://doi.org/10.1071/AS08007. arXiv:0805.1966 [astro-ph]
Jones DI, Crocker RM, Ott J, Protheroe RJ, Ekers RD (2011) Australia telescope compact array radio continuum 1384 and 2368 MHz observations of Sagittarius B. Astron J 141(3):82. https://doi.org/10.1088/0004-6256/141/3/82. arXiv:1011.1656 [astro-ph.GA]
Jouvin L, Lemière A, Terrier R (2017) Does the SN rate explain the very high energy cosmic rays in the central 200 pc of our Galaxy? Mon Not R Astron Soc 467(4):4622–4630. https://doi.org/10.1093/mnras/stx361. arXiv:1703.10398 [astro-ph.HE]
Kafexhiu E, Aharonian F, Taylor AM, Vila GS (2014) Parametrization of gamma-ray production cross sections for p p interactions in a broad proton energy range from the kinematic threshold to PeV energies. Phys Rev D 90(12):123014. https://doi.org/10.1103/PhysRevD.90.123014. arXiv:1406.7369 [astro-ph.HE]
Kamae T, Karlsson N, Mizuno T, Koi T (2006) Parameterization of \(\gamma\), e\(^{+/-}\), and neutrino spectra produced by p-p interaction in astronomical environments. Astrophys J 647(1):692–708. https://doi.org/10.1086/505189. arXiv:astro-ph/0605581
Kelner SR, Aharonian FA, Bugayov VV (2006) Energy spectra of gamma rays, electrons, and neutrinos produced at proton–proton interactions in the very high energy regime. Phys Rev D 74(3):034018. https://doi.org/10.1103/PhysRevD.74.034018. arXiv:astro-ph/0606058
Kim YK, Rudd ME (1994) Binary-encounter-dipole model for electron-impact ionization. Phys Rev A 50(5):3954–3967. https://doi.org/10.1103/PhysRevA.50.3954
Kim YK, Santos JP, Parente F (2000) Extension of the binary-encounter-dipole model to relativistic incident electrons. Phys Rev A 62(5):052710. https://doi.org/10.1103/PhysRevA.62.052710
Kirk JG (1994) Particle acceleration. In: Benz AO, Courvoisier TJL (eds) Plasma Astrophysics. Saas-Fee Advanced Courses, vol 24. Springer, Berlin, Heidelberg, pp 225–314. https://doi.org/10.1007/3-540-31627-2_3
Koldobskiy S, Kachelrieß M, Lskavyan A et al (2021) Energy spectra of secondaries in proton–proton interactions. Phys Rev D 104(12):123027. https://doi.org/10.1103/PhysRevD.104.123027. arXiv:2110.00496 [astro-ph.HE]
Krause J, Morlino G, Gabici S (2015) CRIME—cosmic ray interactions in molecular environments. In: The 34th International Cosmic Ray Conference (ICRC2015). Proc Sci, vol 236. SISSA, p 518. https://doi.org/10.22323/1.236.0518
Krimigis SM, Armstrong TP, Axford WI et al (1977) The low energy charged particle (LECP) experiment on the Voyager spacecraft. Space Sci Rev 21(3):329–354. https://doi.org/10.1007/BF00211545
Krimigis SM, Decker RB, Roelof EC et al (2013) Search for the exit: Voyager 1 at heliosphere’s border with the galaxy. Science 341(6142):144–147. https://doi.org/10.1126/science.1235721
Krimigis SM, Decker RB, Roelof EC et al (2019) Energetic charged particle measurements from Voyager 2 at the heliopause and beyond. Nat Astron 3:997–1006. https://doi.org/10.1038/s41550-019-0927-4
Krumholz MR (2014) The big problems in star formation: the star formation rate, stellar clustering, and the initial mass function. Phys Rep 539:49–134. https://doi.org/10.1016/j.physrep.2014.02.001. arXiv:1402.0867 [astro-ph.GA]
Krymskii GF (1977) A regular mechanism for the acceleration of charged particles on the front of a shock wave. Akademiia Nauk SSSR Doklady 234:1306–1308
Kuhlen M, Mertsch P (2019) Time-dependent AMS-02 electron–positron fluxes in an extended force-field model. Phys Rev Lett 123(25):251104. https://doi.org/10.1103/PhysRevLett.123.251104. arXiv:1909.01154 [astro-ph.HE]
Kulsrud RM (2005) Plasma physics for astrophysics. Princeton University Press, Princeton
Kulsrud RM, Cesarsky CJ (1971) The effectiveness of instabilities for the confinement of high energy cosmic rays in the galactic disk. Astrophys Lett 8:189
Kulsrud R, Pearce WP (1969) The effect of wave-particle interactions on the propagation of cosmic rays. Astrophys J 156:445. https://doi.org/10.1086/149981
Larsson M (2000) Experimental studies of the dissociative recombination of H\(_{3}^{ +}\). Astron Phys Chem H\(^{+}_{3}\) 3:2433–2444. https://doi.org/10.1098/rsta.2000.0658
Larsson M, Geppert WD, Nyman G (2012) Ion chemistry in space. Rep Prog Phys 75(6):066901. https://doi.org/10.1088/0034-4885/75/6/066901
Lee HH, Bettens RPA, Herbst E (1996) Fractional abundances of molecules in dense interstellar clouds: a compendium of recent model results. Astron Astrophys Suppl 119:111–114
Le Petit F, Ruaud M, Bron E et al (2016) Physical conditions in the central molecular zone inferred by H\(_{3}^{+}\). Astron Astrophys 585:A105. https://doi.org/10.1051/0004-6361/201526658. arXiv:1510.02221 [astro-ph.GA]
Lerche I (1967) Unstable magnetosonic waves in a relativistic plasma. Astrophys J 147:689. https://doi.org/10.1086/149045
Lindsay CM, McCall BJ (2001) Comprehensive evaluation and compilation of H\(_{3}^{+}\) spectroscopy. J Mol Spectrosc 210(1):60–83. https://doi.org/10.1006/jmsp.2001.8444
Lingenfelter RE (2018) Cosmic rays from supernova remnants and superbubbles. Adv Space Res 62(10):2750–2763. https://doi.org/10.1016/j.asr.2017.04.006. arXiv:1807.09726 [astro-ph.HE]
Liszt H (2003) Gas-phase recombination, grain neutralization and cosmic-ray ionization in diffuse gas. Astron Astrophys 398:621–630. https://doi.org/10.1051/0004-6361:20021660. arXiv:astro-ph/0211369
Luhmann JG (1976) A quasi-linear kinetic equation for cosmic rays in the interplanetary medium. J Geophys Res 81(13):2089. https://doi.org/10.1029/JA081i013p02089
Mac Low MM, Klessen RS (2004) Control of star formation by supersonic turbulence. Rev Mod Phys 76(1):125–194. https://doi.org/10.1103/RevModPhys.76.125. arXiv:astro-ph/0301093
Marcowith A, van Marle AJ, Plotnikov I (2021) The cosmic ray-driven streaming instability in astrophysical and space plasmas. Phys Plasmas 28(8):080601. https://doi.org/10.1063/5.0013662
Maret S, Bergin EA (2007) The ionization fraction of Barnard 68: implications for star and planet formation. Astrophys J 664(2):956–963. https://doi.org/10.1086/519152. arXiv:0704.3188 [astro-ph]
Marscher AP, Brown RL (1978) Energetic secondary electrons and the nonthermal galactic radio background: a probe of the magnetic field in interstellar clouds. Astrophys J 221:588–597. https://doi.org/10.1086/156061
McCall BJ, Geballe TR, Hinkle KH, Oka T (1999) Observations of H\(^{+}_{3}\) in dense molecular clouds. Astrophys J 522(1):338–348. https://doi.org/10.1086/307637
McCall BJ, Hinkle KH, Geballe TR et al (2002) Observations of H\(_{3}^{+}\) in the diffuse interstellar medium. Astrophys J 567(1):391–406. https://doi.org/10.1086/338380. arXiv:astro-ph/0110674
McCall BJ, Huneycutt AJ, Saykally RJ et al (2003) An enhanced cosmic-ray flux towards \({\zeta }\) Persei inferred from a laboratory study of the H\(_{3}^{+}\)-e\(^{-}\) recombination rate. Nature 422(6931):500–502. https://doi.org/10.1038/nature01498. arXiv:astro-ph/0302106
McCall BJ, Huneycutt AJ, Saykally RJ et al (2004) Dissociative recombination of rotationally cold H\(^{+}_{3}\). Phys Rev A 70(5):052716. https://doi.org/10.1103/PhysRevA.70.052716
McEnery J, van der Horst A, Dominguez A et al (2019) All-sky medium energy gamma-ray observatory: exploring the extreme multimessenger universe. Bull Am Astron Soc 51:245 arXiv:1907.07558 [astro-ph.IM]
McKee CF (1989) Photoionization-regulated star formation and the structure of molecular clouds. Astrophys J 345:782. https://doi.org/10.1086/167950
McKee CF, Ostriker EC (2007) Theory of star formation. Annu Rev Astron Astrophys 45(1):565–687. https://doi.org/10.1146/annurev.astro.45.051806.110602. arXiv:0707.3514 [astro-ph]
Meneguzzi M, Audouze J, Reeves H (1971) The production of the elements Li, Be, B by galactic cosmic rays in space and its relation with stellar observations. Astron Astrophys 15:337
Meng F, Sánchez-Monge Á, Schilke P et al (2019) The physical and chemical structure of Sagittarius B2. V. Non-thermal emission in the envelope of Sgr B2. Astron Astrphys 630:A73. https://doi.org/10.1051/0004-6361/201935920. arXiv:1908.07237 [astro-ph.GA]
Menn W, Hof M, Reimer O et al (2000) The absolute flux of protons and helium at the top of the atmosphere using IMAX. Astrophys J 533(1):281–297. https://doi.org/10.1086/308645
Mertsch P (2020) Test particle simulations of cosmic rays. Astrophys Space Sci 365(8):135. https://doi.org/10.1007/s10509-020-03832-3
Miller S, Tennyson J, Geballe TR, Stallard T (2020) Thirty years of H\(_{3}^{+}\) astronomy. Rev Mod Phys 92(3):035003. https://doi.org/10.1103/RevModPhys.92.035003
Moraal H (2013) Cosmic-ray modulation equations. Space Sci Rev 176(1–4):299–319. https://doi.org/10.1007/s11214-011-9819-3
Morales Ortiz JL, Ceccarelli C, Lis DC et al (2014) Ionization toward the high-mass star-forming region NGC 6334 I. Astron Astrophys 563:A127. https://doi.org/10.1051/0004-6361/201322071. arXiv:1306.3012 [astro-ph.GA]
Morfill GE (1982a) Gamma ray emission from interstellar clouds—a plasma physical process capable of enhancing electron fluxes. Mon Not R Astron Soc 198:583–588. https://doi.org/10.1093/mnras/198.2.583
Morfill GE (1982b) Secondary electron spectra in interstellar clouds, and the bremsstrahlung gamma-ray luminosity. Astrophys J 262:749–759. https://doi.org/10.1086/160470
Mori M (2009) Nuclear enhancement factor in calculation of Galactic diffuse gamma-rays: a new estimate with DPMJET-3. Astropart Phys 31(5):341–343. https://doi.org/10.1016/j.astropartphys.2009.03.004. arXiv:0903.3260 [astro-ph.HE]
Morlino G, Gabici S (2015) Cosmic ray penetration in diffuse clouds. Mon Not R Astron Soc 451:L100–L104. https://doi.org/10.1093/mnrasl/slv074. arXiv:1503.02435 [astro-ph.HE]
Müller HSP, Endres CP, Stutzki J, Schlemmer S (2013) The CDMS view on molecular data needs of Herschel, SOFIA, and ALMA. In: Gillaspy JD, Wiese WL, Podpaly YA (eds) Eighth international conference on atomic and molecular data and their applications: ICAMDATA-2012. AIP Conference Proceedings, vol 1545. American Institute of Physics, Melville, NY, pp 96–109. https://doi.org/10.1063/1.4815844. arXiv:1304.1894 [astro-ph.GA]
Neufeld DA, Wolfire MG (2017) The cosmic-ray ionization rate in the galactic disk, as determined from observations of molecular ions. Astrophys J 845(2):163. https://doi.org/10.3847/1538-4357/aa6d68. arXiv:1704.03877 [astro-ph.GA]
Neufeld DA, Goicoechea JR, Sonnentrucker P et al (2010) Herschel/HIFI observations of interstellar OH\(^{+}\) and H\(_{2}\)O\(^{+}\) towards W49N: a probe of diffuse clouds with a small molecular fraction. Astron Astrophys 521:L10. https://doi.org/10.1051/0004-6361/201015077. arXiv:1007.0987 [astro-ph.GA]
Nobukawa KK, Nobukawa M, Koyama K et al (2018) Evidence for a neutral iron line generated by MeV protons from supernova remnants interacting with molecular clouds. Astrophys J 854(2):87. https://doi.org/10.3847/1538-4357/aaa8dc. arXiv:1801.07881 [astro-ph.HE]
Nozzoli F, Cernetti C (2021) Beryllium radioactive isotopes as a probe to measure the residence time of cosmic rays in the galaxy and halo thickness: a “data-driven’’ approach. Universe 7(6):183. https://doi.org/10.3390/universe7060183
Oka T (2003) Help!!! Theory for H +3 recombination badly needed. In: Guberman SL (ed) Dissociative recombination of molecular ions with electrons. Springer, Boston, pp 209–220. https://doi.org/10.1007/978-1-4615-0083-4_21
Oka T (2006) Interstellar chemistry special feature: interstellar H3+. Proc Natl Acad Sci 103(33):12235–12242. https://doi.org/10.1073/pnas.0601242103
Oka T, Geballe TR, Goto M et al (2019) The central 300 pc of the galaxy probed by infrared spectra of H\(_3^+\) and CO. I. Predominance of warm and diffuse gas and high H\(_{2}\) ionization rate. Astrophys J 883(1):54. https://doi.org/10.3847/1538-4357/ab3647. arXiv:1910.04762 [astro-ph.HE]
Orlando E (2018) Imprints of cosmic rays in multifrequency observations of the interstellar emission. Mon Not R Astron Soc 475(2):2724–2742. https://doi.org/10.1093/mnras/stx3280. arXiv:1712.07127 [astro-ph.HE]
Orlando E, Strong A (2013) Galactic synchrotron emission with cosmic ray propagation models. Mon Not R Astron Soc 436(3):2127–2142. https://doi.org/10.1093/mnras/stt1718. arXiv:1309.2947 [astro-ph.GA]
Orlando E, Bottacini E, Moiseev A et al (2022) Exploring the MeV sky with a combined coded mask and compton telescope: the Galactic Explorer with a Coded Aperture Mask Compton Telescope (GECCO). J Cosmol Astropart Phys 07:036
Padovani M, Galli D (2018) Synchrotron emission in molecular cloud cores: the SKA view. Astron Astrophys 620:L4. https://doi.org/10.1051/0004-6361/201834222. arXiv:1811.09698 [astro-ph.HE]
Padovani M, Galli D, Glassgold AE (2009) Cosmic-ray ionization of molecular clouds. Astron Astrophys 501(2):619–631. https://doi.org/10.1051/0004-6361/200911794. arXiv:0904.4149 [astro-ph.SR]
Padovani M, Hennebelle P, Galli D (2013) Cosmic-ray ionisation in collapsing clouds. Astron Astrophys 560:A114. https://doi.org/10.1051/0004-6361/201322407. arXiv:1310.2158 [astro-ph.GA]
Padovani M, Marcowith A, Hennebelle P, Ferrière K (2016) Protostars: forges of cosmic rays? Astron Astrophys 590:A8. https://doi.org/10.1051/0004-6361/201628221. arXiv:1602.08495 [astro-ph.HE]
Padovani M, Ivlev AV, Galli D, Caselli P (2018) Cosmic-ray ionisation in circumstellar discs. Astron Astrophys 614:A111. https://doi.org/10.1051/0004-6361/201732202. arXiv:1803.09348 [astro-ph.HE]
Padovani M, Ivlev AV, Galli D et al (2020) Impact of low-energy cosmic rays on star formation. Space Sci Rev 216(2):29. https://doi.org/10.1007/s11214-020-00654-1. arXiv:2002.10282 [astro-ph.GA]
Padovani M, Bialy S, Galli D et al (2022) Cosmic rays in molecular clouds probed by H\(_{2}\) rovibrational lines. Perspectives for the James Webb Space Telescope. Astron Astrophys 658:A189. https://doi.org/10.1051/0004-6361/202142560. arXiv:2201.08457 [astro-ph.GA]
Parker EN (1965) The passage of energetic charged particles through interplanetary space. Planet Space Sci 13(1):9–49. https://doi.org/10.1016/0032-0633(65)90131-5
Peron G, Aharonian F, Casanova S, Yang R, Zanin R (2021) Probing the cosmic-ray density in the inner galaxy. Astrophys J Lett 907(1):L11. https://doi.org/10.3847/2041-8213/abcaa9. arXiv:2101.09510 [astro-ph.HE]
Phan VHM (2020) Cosmic ray interaction in molecular environment. PhD thesis, Université de Paris
Phan VHM, Morlino G, Gabici S (2018) What causes the ionization rates observed in diffuse molecular clouds? The role of cosmic ray protons and electrons. Mon Not R Astron Soc 480(4):5167–5174. https://doi.org/10.1093/mnras/sty2235. arXiv:1804.10106 [astro-ph.HE]
Phan VHM, Gabici S, Morlino G et al (2020) Constraining the cosmic ray spectrum in the vicinity of the supernova remnant W28: from sub-GeV to multi-TeV energies. Astron Astrophys 635:A40. https://doi.org/10.1051/0004-6361/201936927. arXiv:1910.09987 [astro-ph.HE]
Phan VHM, Schulze F, Mertsch P, Recchia S, Gabici S (2021) Stochastic fluctuations of low-energy cosmic rays and the interpretation of Voyager data. Phys Rev Lett 127(14):141101. https://doi.org/10.1103/PhysRevLett.127.141101. arXiv:2105.00311 [astro-ph.HE]
Pinto C, Galli D (2008) Three-fluid plasmas in star formation. II. Momentum transfer rate coefficients. Astron Astrophys 484(1):17–28. https://doi.org/10.1051/0004-6361:20078819. arXiv:0804.2856 [astro-ph]
Ponti G, Terrier R, Goldwurm A, Belanger G, Trap G (2010) Discovery of a superluminal Fe K echo at the galactic center: the glorious past of Sgr A* preserved by molecular clouds. Astrophys J 714(1):732–747. https://doi.org/10.1088/0004-637X/714/1/732. arXiv:1003.2001 [astro-ph.HE]
Porras AJ, Federman SR, Welty DE, Ritchey AM (2014) OH\(^{+}\) in diffuse molecular clouds. Astrophys J Lett 781(1):L8. https://doi.org/10.1088/2041-8205/781/1/L8. arXiv:1312.5239 [astro-ph.GA]
Potgieter MS (2013) Solar modulation of cosmic rays. Living Rev Sol Phys 10:3. https://doi.org/10.12942/lrsp-2013-3. arXiv:1306.4421 [physics.space-ph]
Pothast M, Gaggero D, Storm E, Weniger C (2018) On the progressive hardening of the cosmic-ray proton spectrum in the inner Galaxy. J Cosm Astropart Phys 2018(10):045. https://doi.org/10.1088/1475-7516/2018/10/045. arXiv:1807.04554 [astro-ph.HE]
Protheroe RJ, Ott J, Ekers RD, Jones DI, Crocker RM (2008) Interpretation of radio continuum and molecular line observations of Sgr B2: free-free and synchrotron emission, and implications for cosmic rays. Mon Not R Astron Soc 390(2):683–692. https://doi.org/10.1111/j.1365-2966.2008.13752.x. arXiv:0807.0127 [astro-ph]
Ptuskin VS, Soutoul A (1998) Cosmic-ray clocks. Space Sci Rev 86:225–238. https://doi.org/10.1023/A:1005071612125
Quenby JJ (1984) The theory of cosmic-ray modulation. Space Sci Rev 37(3–4):201–267. https://doi.org/10.1007/BF00226364
Ramaty R, Kozlovsky B, Lingenfelter RE (1979) Nuclear gamma-rays from energetic particle interactions. Astrophys J Suppl 40:487–526. https://doi.org/10.1086/190596
Reames DV (1999) Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90:413–491. https://doi.org/10.1023/A:1005105831781
Recchia S (2020) Cosmic ray driven galactic winds. Int J Mod Phys D 29(7):2030006–50. https://doi.org/10.1142/S0218271820300062
Recchia S, Phan VHM, Biswas S, Gabici S (2019) Can a cosmic ray carrot explain the ionization level in diffuse molecular clouds? Mon Not R Astron Soc 485(2):2276–2280. https://doi.org/10.1093/mnras/stz555. arXiv:1901.04912 [astro-ph.HE]
Recchia S, Galli D, Nava L et al (2022) Grammage of cosmic rays in the proximity of supernova remnants embedded in a partially ionized medium. Astron Astrophys 660:A57. https://doi.org/10.1051/0004-6361/202142558. arXiv:2106.04948 [astro-ph.HE]
Reeves H (1994) On the origin of the light elements (Z\(<\)6). Rev Mod Phys 66(1):193–216. https://doi.org/10.1103/RevModPhys.66.193
Reeves H, Fowler WA, Hoyle F (1970) Galactic cosmic ray origin of Li, Be and B in stars. Nature 226(5247):727–729. https://doi.org/10.1038/226727a0
Remy Q, Grenier IA, Marshall DJ, Casandjian JM (2017) Cosmic rays, gas and dust in nearby anticentre clouds. I. CO-to-H\(_{2}\) conversion factors and dust opacities. Astron Astrophys 601:A78. https://doi.org/10.1051/0004-6361/201629632. arXiv:1703.05237 [astro-ph.HE]
Reville B, Giacinti G, Scott R (2021) Cosmic-ray current-driven instabilities—revisiting environmental conditions. Mon Not R Astron Soc 502(3):4137–4153. https://doi.org/10.1093/mnras/stab296. arXiv:2102.00334 [astro-ph.HE]
Rimmer PB, Herbst E, Morata O, Roueff E (2012) Observing a column-dependent \({\zeta }\) in dense interstellar sources: the case of the Horsehead nebula. Astron Astrophys 537:A7. https://doi.org/10.1051/0004-6361/201117048. arXiv:1110.2399 [astro-ph.GA]
Rodríguez LF, Zapata LA (2013) Star formation in the massive “starless’’ infrared dark cloud G0.253+0.016. Astrophys J Lett 767(1):L13. https://doi.org/10.1088/2041-8205/767/1/L13. arXiv:1303.2755 [astro-ph.SR]
Rodríguez-Kamenetzky A, Carrasco-González C, Araudo A et al (2017) The highly collimated radio jet of HH 80-81: structure and nonthermal emission. Astrophys J 851(1):16. https://doi.org/10.3847/1538-4357/aa9895. arXiv:1711.02554 [astro-ph.HE]
Rogers F, Zhang S, Perez K, Clavel M, Taylor A (2022) New constraints on cosmic particle populations at the galactic center using X-ray observations of the molecular cloud Sagittarius B2. Astrophys J 934(1):19. https://doi.org/10.3847/1538-4357/ac7717
Rudd ME (1988) Differential cross sections for secondary electron production by proton impact. Phys Rev A 38(12):6129–6137. https://doi.org/10.1103/PhysRevA.38.6129
Rudd ME, Kim YK, Madison DH, Gay TJ (1992) Electron production in proton collisions with atoms and molecules: energy distributions. Rev Mod Phys 64(2):441–490. https://doi.org/10.1103/RevModPhys.64.441
Sabatini G, Bovino S, Giannetti A et al (2020) Survey of ortho-H\(_{2}\)D\(^{+}\) in high-mass star-forming regions. Astron Astrophys 644:A34. https://doi.org/10.1051/0004-6361/202039010. arXiv:2009.12108 [astro-ph.GA]
Savage BD, Bohlin RC, Drake JF, Budich W (1977) A survey of interstellar molecular hydrogen. I. Astrophys J 216:291–307. https://doi.org/10.1086/155471
Scherer K, Fichtner H, Strauss RD et al (2011) On cosmic ray modulation beyond the heliopause: where is the modulation boundary? Astrophys J 735(2):128. https://doi.org/10.1088/0004-637X/735/2/128
Schilke P, Neufeld DA, Müller HSP et al (2014) Ubiquitous argonium (ArH\(^{+}\)) in the diffuse interstellar medium: a molecular tracer of almost purely atomic gas. Astron Astrophys 566:A29. https://doi.org/10.1051/0004-6361/201423727. arXiv:1403.7902 [astro-ph.GA]
Schlickeiser R (2002) Cosmic ray astrophysics. Astronomy and Astrophysics Library. Springer, Berlin. https://doi.org/10.1007/978-3-662-04814-6
Schlickeiser R, Webber WR, Kempf A (2014) Explanation of the local galactic cosmic ray energy spectra measured by Voyager 1. I. Protons. Astrophys J 787(1):35. https://doi.org/10.1088/0004-637X/787/1/35
Schlickeiser R, Caglar M, Lazarian A (2016) Cosmic rays and MHD turbulence generation in interstellar giant molecular clouds. Astrophys J 824(2):89. https://doi.org/10.3847/0004-637X/824/2/89
Scoville NZ, Sanders DB (1987) H\(_{2}\) in the galaxy. In: Hollenbach DJ, Thronson J, Harley A (eds) Interstellar processes, Astrophysics and Space Science Library, vol 134. Springer, Dordrecht, pp 21–50. https://doi.org/10.1007/978-94-009-3861-8_2
Seo ES, Ptuskin VS (1994) Stochastic reacceleration of cosmic rays in the interstellar medium. Astrophys J 431:705. https://doi.org/10.1086/174520
Shaw G, Ferland GJ (2021) Role of polycyclic aromatic hydrocarbons on the cosmic-ray ionization rate in the galaxy. Astrophys J 908(2):138. https://doi.org/10.3847/1538-4357/abdab2. arXiv:2101.03732 [astro-ph.GA]
Shikaze Y, Haino S, Abe K (1997) Measurements of 0.2 20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer. Astropart Phys 28(1):154–167. https://doi.org/10.1016/j.astropartphys.2007.05.001. arXiv:astro-ph/0611388
Shu FH, Adams FC, Lizano S (1987) Star formation in molecular clouds: observation and theory. Annu Rev Astron Astrophys 25:23–81. https://doi.org/10.1146/annurev.aa.25.090187.000323
Silsbee K, Ivlev AV (2019) Diffusive versus free-streaming cosmic-ray transport in molecular clouds. Astrophys J 879(1):14. https://doi.org/10.3847/1538-4357/ab22b4. arXiv:1904.01588 [astro-ph.HE]
Silsbee K, Ivlev AV, Padovani M, Caselli P (2018) Magnetic mirroring and focusing of cosmic rays. Astrophys J 863(2):188. https://doi.org/10.3847/1538-4357/aad3cf. arXiv:1807.05025 [astro-ph.HE]
Skilling J (1975a) Cosmic ray streaming—I. Effect of Alfvén waves on particles. Mon Not R Astron Soc 172:557–566. https://doi.org/10.1093/mnras/172.3.557
Skilling J (1975b) Cosmic ray streaming—III. Self-consistent solutions. Mon Not R Astron Soc 173:255–269. https://doi.org/10.1093/mnras/173.2.255
Skilling J, Strong AW (1976) Cosmic ray exclusion from dense molecular clouds. Astron Astrophys 53(2):253–258
Snow TP, McCall BJ (2006) Diffuse atomic and molecular clouds. Annu Rev Astron Astrophys 44(1):367–414. https://doi.org/10.1146/annurev.astro.43.072103.150624
Spitzer L Jr, Tomasko MG (1968) Heating of H i regions by energetic particles. Astrophys J 152:971. https://doi.org/10.1086/149610
Stahler SW, Palla F (2004) The formation of stars. Wiley-VCH, Weinheim
Stecker FW (1971) Cosmic gamma rays, Special Publication, vol SP-249. NASA, Washington, DC. https://ntrs.nasa.gov/citations/19710015288
Stone EC, Vogt RE, McDonald FB et al (1977) Cosmic ray investigation for the Voyager missions; energetic particle studies in the outer heliosphere—and beyond. Space Sci Rev 21(3):355–376. https://doi.org/10.1007/BF00211546
Stone EC, Cummings AC, McDonald FB et al (2005) Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309(5743):2017–2020. https://doi.org/10.1126/science.1117684
Stone EC, Cummings AC, McDonald FB et al (2013) Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions. Science 341(6142):150–153. https://doi.org/10.1126/science.1236408
Stone EC, Cummings AC, Heikkila BC, Lal N (2019) Cosmic ray measurements from Voyager 2 as it crossed into interstellar space. Nat Astron 3:1013–1018. https://doi.org/10.1038/s41550-019-0928-3
Streitmatter RE, Stephens SA (2001) The abundance of radioactive nuclei under different physical environments around the solar system. Adv Space Res 27(4):743–748. https://doi.org/10.1016/S0273-1177(01)00115-6
Strong AW (2011) Interstellar gamma rays and cosmic rays: new insights from Fermi-LAT and integral. In: Giani S, Leroy C, Rancoita PG (eds) Cosmic rays for particle and astroparticle physics, pp 473–481. https://doi.org/10.1142/9789814329033_0059. arXiv:1101.1381 [astro-ph.HE]
Strong A (2015) Local interstellar cosmic-ray spectra derived from gamma-ray emissivities. In: The 34th International Cosmic Ray Conference (ICRC2015). Proc Sci, vol 236. SISSA, p 506. https://doi.org/10.22323/1.236.0506
Strong AW, Moskalenko IV, Ptuskin VS (2007) Cosmic-ray propagation and interactions in the Galaxy. Annu Rev Nucl Part Sci 57(1):285–327. https://doi.org/10.1146/annurev.nucl.57.090506.123011. arXiv:astro-ph/0701517
Strong AW, Porter TA, Digel SW et al (2010) Global cosmic-ray-related luminosity and energy budget of the milky way. Astrophys J Lett 722(1):L58–L63. https://doi.org/10.1088/2041-8205/722/1/L58. arXiv:1008.4330 [astro-ph.HE]
Strong AW, Orlando E, Jaffe TR (2011) The interstellar cosmic-ray electron spectrum from synchrotron radiation and direct measurements. Astron Astrophys 534:A54. https://doi.org/10.1051/0004-6361/201116828. arXiv:1108.4822 [astro-ph.HE]
Tartari A, Zannoni M, Gervasi M, Boella G, Sironi G (2008) TRIS. III. The diffuse galactic radio emission at \(\delta = +42^{\circ }\). Astrophys J 688(1):32–42. https://doi.org/10.1086/592135. arXiv:0806.4306 [astro-ph]
Tatischeff V, Gabici S (2018) Particle acceleration by supernova shocks and spallogenic nucleosynthesis of light elements. Annu Rev Nucl Part Sci 68(1):377–404. https://doi.org/10.1146/annurev-nucl-101917-021151. arXiv:1803.01794 [astro-ph.HE]
Tatischeff V, Decourchelle A, Maurin G (2012) Nonthermal X-rays from low-energy cosmic rays: application to the 6.4 keV line emission from the Arches cluster region. Astron Astrophys 546:A88. https://doi.org/10.1051/0004-6361/201219016. arXiv:1210.2108 [astro-ph.HE]
Tatischeff V, Raymond JC, Duprat J, Gabici S, Recchia S (2021) The origin of Galactic cosmic rays as revealed by their composition. Mon Not R Astron Soc 508(1):1321–1345. https://doi.org/10.1093/mnras/stab2533. arXiv:2106.15581 [astro-ph.HE]
Ter Haar D (1950) Cosmogonical problems and stellar energy. Rev Mod Phys 22(2):119–152. https://doi.org/10.1103/RevModPhys.22.119
Thornbury A, Drury LO (2014) Power requirements for cosmic ray propagation models involving re-acceleration and a comment on second-order Fermi acceleration theory. Mon Not R Astron Soc 442(4):3010–3012. https://doi.org/10.1093/mnras/stu1080. arXiv:1404.2104 [astro-ph.HE]
Tibaldo L, Gaggero D, Martin P (2021) Gamma rays as probes of cosmic-ray propagation and interactions in galaxies. Universe 7(5):141. https://doi.org/10.3390/universe7050141. arXiv:2103.16423 [astro-ph.HE]
Tielens AGGM (2008) Interstellar polycyclic aromatic hydrocarbon molecules. Annu Rev Astron Astrophys 46:289–337. https://doi.org/10.1146/annurev.astro.46.060407.145211
Tielens AGGM (2013) The molecular universe. Rev Mod Phys 85(3):1021–1081. https://doi.org/10.1103/RevModPhys.85.1021
Tomsick JA, Boggs SE, Zoglauer A et al (2021) The Compton Spectrometer and Imager Project for MeV Astronomy. In: The 37th International Cosmic Ray Conference (ICRC2021). Proc Sci, vol 395. SISSA, p 652. https://doi.org/10.22323/1.395.0652. arXiv:2109.10403 [astro-ph.IM]
Trimble V (1991) The origin and abundances of the chemical elements revisited. Astron Astrophys Rev 3(1):1–46. https://doi.org/10.1007/BF00873456
van der Tak FFS, van Dishoeck EF (2000) Limits on the cosmic-ray ionization rate toward massive young stars. Astron Astrophys 358:L79–L82 arXiv:astro-ph/0006246
van der Tak FFS, van Dishoeck EF, Evans I, Neal J, Blake GA (2000) Structure and evolution of the envelopes of deeply embedded massive young stars. Astrophys J 537(1):283–303. https://doi.org/10.1086/309011. arXiv:astro-ph/0001527
van Dishoeck EF, Bergin EA (2020) Astrochemistry associated with planet formation. In: Madhusudhan N (ed) ExoFrontiers: Big questions in exoplanetary science. IOP Publishing, Bristol. https://doi.org/10.1088/2514-3433/abfa8fch14
van Dishoeck EF, Black JH (1986) Comprehensive models of diffuse interstellar clouds: physical conditions and molecular abundances. Astrophys J Suppl 62:109. https://doi.org/10.1086/191135
van Dishoeck EF, Black JH (1989) Interstellar C2, CH, and CN in translucent molecular clouds. Astrophys J 340:273. https://doi.org/10.1086/167391
Vangioni-Flam E, Cassé M, Audouze J (2000) Lithium–beryllium–boron: origin and evolution. Phys Rep 333:365–387. https://doi.org/10.1016/S0370-1573(00)00030-2. arXiv:astro-ph/9907171
Vaupré S, Hily-Blant P, Ceccarelli C et al (2014) Cosmic ray induced ionisation of a molecular cloud shocked by the W28 supernova remnant. Astron Astrophys 568:A50. https://doi.org/10.1051/0004-6361/201424036. arXiv:1407.0205 [astro-ph.GA]
Vernetto S, Lipari P (2016) Absorption of very high energy gamma rays in the Milky Way. Phys Rev D 94(6):063009. https://doi.org/10.1103/PhysRevD.94.063009. arXiv:1608.01587 [astro-ph.HE]
von Rosenvinge TT, McDonald FB, Trainor JH, Webber WR (1979) The modulation of galactic cosmic rays between 1 and 17 AU. In: 16th International Cosmic Ray Conference, vol 12. IUPAP, p 170
Vos EE, Potgieter MS (2015) New modeling of galactic proton modulation during the minimum of solar cycle 23/24. Astrophys J 815(2):119. https://doi.org/10.1088/0004-637X/815/2/119
Wakelam V, Loison JC, Herbst E et al (2015) The 2014 KIDA network for interstellar chemistry. Astrophys J Suppl 217(2):20. https://doi.org/10.1088/0067-0049/217/2/20. arXiv:1503.01594 [astro-ph.GA]
Wallerstein G, Icko Iben J, Parker P et al (1997) Synthesis of the elements in stars: forty years of progress. Rev Mod Phys 69(4):995–1084. https://doi.org/10.1103/RevModPhys.69.995
Wardle M (2007) Magnetic fields in protoplanetary disks. Astrophys Space Sci 311(1–3):35–45. https://doi.org/10.1007/s10509-007-9575-8. arXiv:0704.0970 [astro-ph]
Watson WD (1973) The rate of formation of interstellar molecules by ion-molecule reactions. Astrophys J Lett 183:L17. https://doi.org/10.1086/181242
Webber WR, Golden RL, Stochaj SJ, Ormes JF, Strittmatter RE (1991) A measurement of the cosmic-ray \(^2\)H and \(^3\)He spectra and \(^2\)H/ \(^4\)He and \(^3\)He/ \(^4\)He ratios in 1989. Astrophys J 380:230. https://doi.org/10.1086/170578
Wentzel DG (1968) Hydromagnetic waves excited by slowly streaming cosmic rays. Astrophys J 152:987. https://doi.org/10.1086/149611
Wentzel DG (1972) Interstellar motions: minuet or rock? Publ Astron Soc Pac 84(498):225. https://doi.org/10.1086/129277
Wentzel DG (1974) Cosmic-ray propagation in the Galaxy: collective effects. Annu Rev Astron Astrophys 12:71–96. https://doi.org/10.1146/annurev.aa.12.090174.000443
Wiedenbeck ME, Binns WR, Cummings AC et al (2007) An overview of the origin of galactic cosmic rays as inferred from observations of heavy ion composition and spectra. Space Sci Rev 130(1–4):415–429. https://doi.org/10.1007/s11214-007-9198-y
Wolfire MG, McKee CF, Hollenbach D, Tielens AGGM (2003) Neutral atomic phases of the interstellar medium in the galaxy. Astrophys J 587(1):278–311. https://doi.org/10.1086/368016. arXiv:astro-ph/0207098
Woosley SE, Heger A, Weaver TA (2002) The evolution and explosion of massive stars. Rev Mod Phys 74(4):1015–1071. https://doi.org/10.1103/RevModPhys.74.1015
Wootten A, Snell R, Glassgold AE (1979) The determination of electron abundances in interstellar clouds. Astrophys J 234:876–880. https://doi.org/10.1086/157569
Yang R, Aharonian F, Evoli C (2016) Radial distribution of the diffuse \(\gamma\)-ray emissivity in the Galactic disk. Phys Rev D 93(12):123007. https://doi.org/10.1103/PhysRevD.93.123007. arXiv:1602.04710 [astro-ph.HE]
Yusef-Zadeh F, Hewitt JW, Wardle M et al (2013) Interacting cosmic rays with molecular clouds: a Bremsstrahlung origin of diffuse high-energy emission from the inner 2\(^{\circ }\)\({\times }\) 1\(^{\circ }\) of the galactic center. Astrophys J 762(1):33. https://doi.org/10.1088/0004-637X/762/1/33. arXiv:1206.6882 [astro-ph.HE]
Zank GP (1999) Interaction of the solar wind with the local interstellar medium: a theoretical perspective. Space Sci Rev 89:413–688. https://doi.org/10.1023/A:1005155601277
Zank GP (2014) Transport processes in space physics and astrophysics. Lecture notes in physics, vol 877. Springer, New York. https://doi.org/10.1007/978-1-4614-8480-6
Zank GP (2015) Faltering steps into the galaxy: the boundary regions of the heliosphere. Annu Rev Astron Astrophys 53:449–500. https://doi.org/10.1146/annurev-astro-082214-122254
Zhao LL, Qin G, Zhang M, Heber B (2014) Modulation of galactic cosmic rays during the unusual solar minimum between cycles 23 and 24. J Geophys Res 119(3):1493–1506. https://doi.org/10.1002/2013JA019550. arXiv:1310.7076 [astro-ph.SR]
Zhao D, Galazutdinov GA, Linnartz H, Krełowski J (2015) Detection of OH+ in translucent interstellar clouds: new electronic transitions and probing the primary cosmic ray ionization rate. Astrophys J Lett 805(2):L12. https://doi.org/10.1088/2041-8205/805/2/L12
Zhong L, Wu B, Zheng S, Gu Q (2021) A database of electron-impact ionization cross sections of molecules composed of H, C, N, O, and F. Phys Plasmas 28(8):083505. https://doi.org/10.1063/5.0054342
Zucker C, Goodman AA, Alves J et al (2022) Star formation near the Sun is driven by expansion of the Local Bubble. Nature 601(7893):334–337. https://doi.org/10.1038/s41586-021-04286-5. arXiv:2201.05124 [astro-ph.GA]
Zweibel EG (2013) The microphysics and macrophysics of cosmic rays. Phys Plasmas 20(5):055501. https://doi.org/10.1063/1.4807033
Zweibel EG (2017) The basis for cosmic ray feedback: written on the wind. Phys Plasmas 24(5):055402. https://doi.org/10.1063/1.4984017
Zweibel EG, Shull JM (1982) Confinement of cosmic rays in molecular clouds. Astrophys J 259:859–868. https://doi.org/10.1086/160220
Acknowledgements
I would like to thank the editors at A&A Rev, and in particular Luigina Feretti for her advices and infinite patience. I also thank Phan Vo Hong Minh, Sarah Recchia, and Thibault Vieu, who read and commented on the entire manuscript, Paola Caselli, with whom I had (almost 20 years ago) my first discussion on LECRs, and Cecilia Ceccarelli and Thierry Montmerle who gave me the opportunity to start working in this field. While writing this review, I enjoyed discussing LECRs and related topics with G. Bernardi, D. Breitschwerdt, J. Duprat, C. Evoli, D. Gaggero, D. Galli, R. Giuffrida, D. Grasso, A. Ivlev, D. Maurin, P. Mertsch, M. Miceli, M. Padovani, G. Peron, L. Podio, S. Ravikularaman, J. Raymond, G. Sabatini, F. Schulze, A. Strong, V. Tatischeff, R. Terrier, and F. van der Tak. Finally, I acknowledge support from Agence Nationale de la Recherche (grants ANR- 17-CE31-0014 and CRitiLISM).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gabici, S. Low-energy cosmic rays: regulators of the dense interstellar medium. Astron Astrophys Rev 30, 4 (2022). https://doi.org/10.1007/s00159-022-00141-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00159-022-00141-2